Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
GigaByte ; 2024: gigabyte129, 2024.
Article in English | MEDLINE | ID: mdl-38962390

ABSTRACT

Nanopore direct RNA sequencing (DRS) enables measurements of RNA modifications. Modification-free transcripts are a practical and targeted control for DRS, providing a baseline measurement for canonical nucleotides within a matched and biologically-derived sequence context. However, these controls can be challenging to generate and carry nanopore-specific nuances that can impact analyses. We produced DRS datasets using modification-free transcripts from in vitro transcription of cDNA from six immortalized human cell lines. We characterized variation across cell lines and demonstrated how these may be interpreted. These data will serve as a versatile control and resource to the community for RNA modification analyses of human transcripts.

2.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38766185

ABSTRACT

Pseudouridine (psi) is one of the most abundant human mRNA modifications generated from the isomerization of uridine via psi synthases, including TRUB1 and PUS7. Nanopore direct RNA sequencing combined with our recent tool, Mod-p ID, enables psi mapping, transcriptome-wide, without chemical derivatization of the input RNA and/or conversion to cDNA. This method is sensitive for detecting changes in positional psi occupancies across cell types, which can inform our understanding of the impact on gene expression. We sequenced, mapped, and compared the positional psi occupancy across six immortalized human cell lines derived from diverse tissue types. We found that lung-derived cells have the highest proportion of psi, while liver-derived cells have the lowest. Further, among a list of highly conserved sites across cell types, most are TRUB1 substrates and fall within the coding sequence. We find that these conserved psi positions correspond to higher levels of protein expression than expected, suggesting translation regulation. Interestingly, we identify cell type-specific sites of psi modification in ubiquitously expressed genes. We validate these sites by ruling out single-nucleotide variants, analyzing current traces, and performing enzymatic knockdowns of psi synthases. Finally, we characterize sites with multiple psi modifications on the same transcript (hypermodification type II) and found that these can be conserved or cell type specific. Among these, we discovered examples of multiple psi modifications within the same k-mer for the first time and analyzed the effect on current distribution. Our data support the hypothesis that motif sequence and the presence of psi synthase are insufficient to drive modifications, that psi modifications contribute to regulating translation and that cell type-specific trans-acting factors play a major role in driving pseudouridylation.

3.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38585714

ABSTRACT

Chemical modifications in mRNAs such as pseudouridine (psi) can regulate gene expression, although our understanding of the functional impact of individual psi modifications, especially in neuronal cells, is limited. We apply nanopore direct RNA sequencing to investigate psi dynamics under cellular perturbations in SH-SY5Y cells. We assign sites to psi synthases using siRNA-based knockdown. A steady-state enzyme-substrate model reveals a strong correlation between psi synthase and mRNA substrate levels and psi modification frequencies. Next, we performed either differentiation or lead-exposure to SH-SY5Y cells and found that, upon lead exposure, not differentiation, the modification frequency is less dependent on enzyme levels suggesting translational control. Finally, we compared the plasticity of psi sites across cellular states and found that plastic sites can be condition-dependent or condition-independent; several of these sites fall within transcripts encoding proteins involved in neuronal processes. Our psi analysis and validation enable investigations into the dynamics and plasticity of RNA modifications.

4.
ACS Sens ; 8(7): 2563-2571, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37368999

ABSTRACT

Early detection of viruses can prevent the uncontrolled spread of viral infections. Determination of viral infectivity is also critical for determining the dosage of gene therapies, including vector-based vaccines, CAR T-cell therapies, and CRISPR therapeutics. In both cases, for viral pathogens and viral vector delivery vehicles, fast and accurate measurement of infectious titers is desirable. The most common methods for virus detection are antigen-based (rapid but not sensitive) and polymerase chain reaction (PCR)-based (sensitive but not rapid). Current viral titration methods heavily rely on cultured cells, which introduces variability within labs and between labs. Thus, it is highly desirable to directly determine the infectious titer without using cells. Here, we report the development of a direct, fast, and sensitive assay for virus detection (dubbed rapid capture fluorescence in situ hybridization (FISH) or rapture FISH) and cell-free determination of infectious titers. Importantly, we demonstrate that the virions captured are "infectious," thus serving as a more consistent proxy of infectious titers. This assay is unique because it first captures viruses bearing an intact coat protein using an aptamer and then detects genomes directly in individual virions using fluorescence in situ hybridization (FISH); thus, it is selective for infectious particles (i.e., positive for coat proteins and positive for genomes).


Subject(s)
Virus Diseases , Viruses , Humans , In Situ Hybridization, Fluorescence/methods , Viruses/genetics , Polymerase Chain Reaction , Virion
5.
bioRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066160

ABSTRACT

Nanopore direct RNA sequencing (DRS) enables measurements of native RNA modifications. Modification-free transcripts are an important control for DRS. Additionally, it is advantageous to have canonical transcripts from multiple cell lines to better account for human transcriptome variation. Here we generated and analyzed Nanopore DRS datasets for five human cell lines using in vitro transcribed (IVT) RNA. We compared performance statistics amongst biological replicates. We also documented nucleotide and ionic current level variation across cell lines. These data will serve as a resource to the community for RNA modification analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...