Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Brain Behav Evol ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38952102

ABSTRACT

BACKGROUND: Comparative neuroanatomists have long sought to determine which part of the pallium in non-mammals is homologous to the mammalian neocortex. A number of similar connectivity patterns across species has led to the idea that the basic organization of the vertebrate brain is relatively conserved; thus, efforts of the last decades have been focused on determining a vertebrate "morphotype" - a model comprising the characteristics believed to have been present in the last common ancestor of all vertebrates. SUMMARY: The endeavor to determine the vertebrate morphotype has been riddled with controversies due to the extensive morphological diversity of the pallium among vertebrate taxa. Nonetheless, most proposed scenarios of pallial homology are variants of a common theme where the vertebrate pallium is subdivided into subdivisions homologous to the hippocampus, neocortex, piriform cortex and amygdala, in a one-to-one manner. We review the rationales of major propositions of pallial homology and identify the source of the discrepancies behind different hypotheses. We consider that a source of discrepancies is the prevailing assumption that there is a single "morphotype of the pallial subdivisions" throughout vertebrates. Instead, pallial subdivisions present in different taxa probably evolved independently in each lineage. KEY MESSAGES: We encounter discrepancies when we search for a single morphotype of subdivisions across vertebrates. These discrepancies can be resolved by considering that several subdivisions within the pallium were established after the divergence of the different lineages. The differences of pallial organization are especially remarkable between actinopterygians (including teleost fishes) and other vertebrates. Thus, the prevailing notion of a simple one-to-one homology between the mammalian and teleost pallia needs to be reconsidered.

2.
Brain Sci ; 14(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38671963

ABSTRACT

Posttraumatic stress disorder (PTSD) is a widespread fear-related psychiatric affection associated with fear extinction impairments and important avoidance behaviors. Trauma-related exposure therapy is the current first-hand treatment for PTSD, yet it needs to be improved to shorten the time necessary to reach remission and increase responsiveness. Additional studies to decipher the neurobiological bases of extinction and effects on PTSD-like symptoms could therefore be of use. However, a PTSD-like animal model exhibiting pronounced PTSD-related phenotypes even after an extinction training directly linked to the fearful event is necessary. Thus, using a contextual fear conditioning model of PTSD, we increased the severity of stress during conditioning to search for effects on extinction acquisition and on pre- and post-extinction behaviors. During conditioning, mice received either two or four electrical shocks while a control group was constituted of mice only exposed to the context. Stressed mice exhibited important fear generalization, high fear reaction to the context and selective avoidance of a contextual reminder even after the extinction protocol. Increasing the number of footshocks did not induce major changes on these behaviors.

3.
Curr Opin Psychiatry ; 36(1): 14-19, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36449728

ABSTRACT

PURPOSE OF REVIEW: The use of neurostimulation to treat mood disorders dates back to the 1930s. Recent studies have explored various neurostimulation methods aimed at both restoring a healthy brain and reducing adverse effects in patients. The purpose of this review is to explore the most recent hypotheses and clinical studies investigating the effects of stimulating the brain on mood disorders. RECENT FINDINGS: Recent work on brain stimulation and mood disorders has focused mainly on three aspects: enhancing efficacy and safety by developing new approaches and protocols, reducing treatment duration and chances of relapse, and investigating the physiological and pathological mechanisms behind treatment outcomes and possible adverse effects.This review includes some of the latest studies on both noninvasive techniques, such as transcranial magnetic stimulation, magnetic seizure therapy, transcranial direct current stimulation, transcranial alternating current stimulation, electroconvulsive treatment, and invasive techniques, such as deep brain stimulation and vagus nerve stimulation. SUMMARY: Brain stimulation is widely used in clinical settings; however, there is a lack of understanding about its neurobiological mechanism. Further studies are needed to understand the neurobiology of brain stimulation and how it can be used to treat mood disorders in their diversity, including comorbidities with other illnesses.


Subject(s)
Electroconvulsive Therapy , Transcranial Direct Current Stimulation , Humans , Mood Disorders/therapy , Electroconvulsive Therapy/adverse effects , Transcranial Magnetic Stimulation , Brain
4.
Alcohol ; 100: 41-56, 2022 05.
Article in English | MEDLINE | ID: mdl-35181404

ABSTRACT

Alcohol use disorder (AUD) is frequently comorbid with mood disorders, and these co-occurring neuropsychiatric disorders contribute to the development and maintenance of alcohol dependence and relapse. In preclinical models, mice chronically exposed to alcohol display anxiety-like and depressive-like behaviors during acute withdrawal and protracted abstinence. However, in total, results from studies using voluntary alcohol-drinking paradigms show variable behavioral outcomes in assays measuring negative affective behaviors. Thus, the main objective of this review is to summarize the literature on the variability of negative affective behaviors in mice after chronic alcohol exposure. We compare the behavioral phenotypes that emerge during abstinence across different exposure models, including models of alcohol and stress interactions. The complicated outcomes from these studies highlight the difficulties of assessing negative affective behaviors in mouse models designed for the study of AUD. We discuss new behavioral assays, comprehensive platforms, and unbiased machine-learning algorithms as promising approaches to better understand the interaction between alcohol and negative affect in mice. New data-driven approaches in the understanding of mouse behavior hold promise for improving the identification of mechanisms, cell subtypes, and neurocircuits that mediate negative affect. In turn, improving our understanding of the neurobehavioral basis of alcohol-associated negative affect will provide a platform to test hypotheses in mouse models that aim to improve the development of more effective strategies for treating individuals with AUD and co-occurring mood disorders.


Subject(s)
Alcohol Drinking , Alcoholism , Affect , Alcohol Abstinence , Alcohol Drinking/psychology , Alcoholism/psychology , Animals , Anxiety/psychology , Anxiety Disorders/psychology , Ethanol , Mice
5.
Elife ; 92020 09 08.
Article in English | MEDLINE | ID: mdl-32896272

ABSTRACT

Ascending visual projections similar to the mammalian thalamocortical pathway are found in a wide range of vertebrate species, but their homology is debated. To get better insights into their evolutionary origin, we examined the developmental origin of a thalamic-like sensory structure of teleosts, the preglomerular complex (PG), focusing on the visual projection neurons. Similarly to the tectofugal thalamic nuclei in amniotes, the lateral nucleus of PG receives tectal information and projects to the pallium. However, our cell lineage study in zebrafish reveals that the majority of PG cells are derived from the midbrain, unlike the amniote thalamus. We also demonstrate that the PG projection neurons develop gradually until late juvenile stages. Our data suggest that teleost PG, as a whole, is not homologous to the amniote thalamus. Thus, the thalamocortical-like projections evolved from a non-forebrain cell population, which indicates a surprising degree of variation in the vertebrate sensory systems.


Subject(s)
Biological Evolution , Cell Lineage , Thalamic Nuclei/embryology , Visual Pathways/embryology , Zebrafish/embryology , Animals , Embryo, Nonmammalian/embryology
6.
Alcohol ; 88: 91-99, 2020 11.
Article in English | MEDLINE | ID: mdl-32777473

ABSTRACT

Alcohol use disorder is highly comorbid with other neuropsychiatric disorders such as depression and anxiety. Importantly, women and men are affected differentially by heavy drinking, with women experiencing longer negative affective states after intoxication and increased likelihood to present with comorbid mood or anxiety disorders. In rodents, several studies using different alcohol administration models have shown the development of depressive-like or anxiety-like phenotypes that emerge during abstinence. In this study, we compared the emergence of negative affective behaviors during abstinence from 7 weeks of two-bottle choice intermittent access to 20% alcohol in male and female C57BL/6J mice, a drinking paradigm little studied in this context. Half of the mice were tested 24 hours into abstinence on the elevated zero maze and 19-20 days into abstinence in a novel object in the home cage encounter test. The other half of the mice were tested 27-28 days into abstinence with the novelty-suppressed feeding test. As expected, females drank more than males across the 7 weeks of access to alcohol. Drinking history did not affect performance on these tasks, with the exception of increasing the number of open arm entries on the elevated zero maze. Interestingly, in alcohol-naïve mice, females showed fewer anxiety-like behaviors than males in the elevated zero maze and the novelty-suppressed feeding test. Our results suggest that the intermittent access model does not reliably induce negative affective behaviors on these tasks, and that behavior in female and male mice differs across these tests. Rather, intermittent alcohol drinking may induce a mild form of behavioral disinhibition. Thus, the model of alcohol access is a critical factor in determining the appearance of behavioral disturbances that emerge during abstinence.


Subject(s)
Alcoholism , Anxiety , Ethanol/adverse effects , Mood Disorders/chemically induced , Alcohol Drinking , Alcoholism/complications , Animals , Anxiety/chemically induced , Female , Male , Mice , Mice, Inbred C57BL
7.
FASEB J ; 34(10): 13641-13653, 2020 10.
Article in English | MEDLINE | ID: mdl-32862444

ABSTRACT

Leucine-rich repeat and immunoglobin-domain containing (LRRIG) proteins that are commonly involved in protein-protein interactions play important roles in nervous system development and maintenance. LINGO-1, one of this family members, is characterized as a negative regulator of neuronal survival, axonal regeneration, and oligodendrocyte precursor cell (OPC) differentiation into mature myelinating oligodendrocytes. Three LINGO-1 homologs named LINGO-2, LINGO-3, and LINGO-4 have been described. However, their relative expression and functions remain unexplored. Here, we show by in situ hybridization and quantitative polymerase chain reaction that the transcripts of LINGO homologs are differentially expressed in the central nervous system. The immunostaining of brain slices confirmed this observation and showed the co-expression of LINGO-1 with its homologs. Using BRET (bioluminescence resonance energy transfer) analysis, we demonstrate that LINGO proteins can physically interact with each of the other ones with comparable affinities and thus form the oligomeric states. Furthermore, co-immunoprecipitation experiments indicate that LINGO proteins form heterocomplexes in both heterologous systems and cortical neurons. Since LINGO-1 is a promising target for the treatment of demyelinating diseases, its ability to form heteromeric complexes reveals a new level of complexity in its functioning and opens the way for new strategies to achieve diverse and nuanced LINGO-1 regulation.


Subject(s)
Brain/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Protein Multimerization , Animals , HEK293 Cells , Humans , Membrane Proteins/genetics , Mice , Nerve Tissue Proteins/genetics , Protein Binding
8.
Behav Brain Res ; 370: 111924, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31028766

ABSTRACT

Operant conditioning is a powerful tool to study animal perception and cognition. Compared to mammals and birds, there are very few behavioral studies using operant conditioning paradigm in teleosts. Here we aim to establish matching-to-sample task (MTS) in adult zebrafish, using visual cues (colors) as discriminative stimuli. Unlike simple one-to-one color-reward association learning, MTS requires ability for context integration. In this study, zebrafish learned to perform the simultaneous-matching-to-sample (SMTS) within 15 sessions. After the SMTS training, working memory was tested by inserting a delay period (delayed matching-to-sample; DMTS). Zebrafish could perform the DMTS with a delay of at least 3-4 seconds. They could also learn to perform the DMTS even with a delay period from the beginning of the training session. These results strongly suggest that adult zebrafish possess working memory. However, our study also indicates limitations of zebrafish in cognitive flexibility or attention: they could perform SMTS/DMTS only in a certain set-up. The presence of working memory without the mesencephalic dopamine neurons indicates the convergent evolution of this function in amniotes and teleosts.


Subject(s)
Conditioning, Operant/physiology , Learning/physiology , Memory, Short-Term/physiology , Animals , Attention/physiology , Cues , Discrimination Learning/physiology , Female , Male , Zebrafish/metabolism
9.
BMC Biol ; 17(1): 22, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30849972

ABSTRACT

BACKGROUND: Although the overall brain organization is shared in vertebrates, there are significant differences within subregions among different groups, notably between Sarcopterygii (lobe-finned fish) and Actinopterygii (ray-finned fish). Recent comparative studies focusing on the ventricular morphology have revealed a large diversity of the hypothalamus. Here, we study the development of the inferior lobe (IL), a prominent structure forming a bump on the ventral surface of the teleost brain. Based on its position, IL has been thought to be part of the hypothalamus (therefore forebrain). RESULTS: Taking advantage of genetic lineage-tracing techniques in zebrafish, we reveal that cells originating from her5-expressing progenitors in the midbrain-hindbrain boundary (MHB) participate in the formation of a large part of the IL. 3D visualization demonstrated how IL develops in relation to the ventricular system. We found that IL is constituted by two developmental components: the periventricular zone of hypothalamic origin and the external zone of mesencephalic origin. The mesencephalic external zone grows progressively until adulthood by adding new cells throughout development. CONCLUSION: Our results disprove a homology between the IL and the mammalian lateral hypothalamus. We suggest that the IL is likely to be involved in multimodal sensory integration rather than feeding motivation. The teleost brain is not a simpler version of the mammalian brain, and our study highlights the evolutionary plasticity of the brain which gives rise to novel structures.


Subject(s)
Mesencephalon/embryology , Prosencephalon/embryology , Zebrafish/embryology , Animals , Biological Evolution , Cell Lineage/physiology , Mesencephalon/cytology , Neural Stem Cells/cytology , Prosencephalon/cytology
10.
Dev Growth Differ ; 59(4): 175-187, 2017 May.
Article in English | MEDLINE | ID: mdl-28470718

ABSTRACT

In the current model, the most anterior part of the forebrain (secondary prosencephalon) is subdivided into the telencephalon dorsally and the hypothalamus ventrally. Our recent study identified a new morphogenetic unit named the optic recess region (ORR) between the telencephalon and the hypothalamus. This modification of the forebrain regionalization based on the ventricular organization resolved some previously unexplained inconsistency about regional identification in different vertebrate groups. The ventricular-based comparison also revealed a large diversity within the subregions (notably in the hypothalamus and telencephalon) among different vertebrate groups. In tetrapods there is only one hypothalamic recess, while in teleosts there are two recesses. Most notably, the mammalian and teleost hypothalami are two extreme cases: the former has lost the cerebrospinal fluid-contacting (CSF-c) neurons, while the latter has increased them. Thus, one to one homology of hypothalamic subregions in mammals and teleosts requires careful verification. In the telencephalon, different developmental processes between Sarcopterygii (lobe-finned fish) and Actinopterygii (ray-finned fish) have already been described: the evagination and the eversion. Although pallial homology has been long discussed based on the assumption that the medial-lateral organization of the pallium in Actinopterygii is inverted from that in Sarcopterygii, recent developmental data contradict this assumption. Current models of the brain organization are largely based on a mammalian-centric point of view, but our comparative analyses shed new light on the brain organization of Osteichthyes.


Subject(s)
Fishes/embryology , Telencephalon/embryology , Animals , Neurogenesis/physiology , Prosencephalon/embryology
11.
J Comp Neurol ; 525(9): 2265-2283, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28295297

ABSTRACT

Cerebrospinal fluid-contacting (CSF-c) cells containing monoamines such as dopamine (DA) and serotonin (5-HT) occur in the periventricular zones of the hypothalamic region of most vertebrates except for placental mammals. Here we compare the organization of the CSF-c cells in chicken, Xenopus, and zebrafish, by analyzing the expression of synthetic enzymes of DA and 5-HT, respectively, tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), and draw an evolutionary scenario for this cell population. Due to the lack of TH immunoreactivity in this region, the hypothalamic CSF-c cells have been thought to take up DA from the ventricle instead of synthesizing it. We demonstrate that a second TH gene (TH2) is expressed in the CSF-c cells of all the three species, suggesting that these cells do indeed synthetize DA. Furthermore, we found that many CSF-c cells coexpress TH2 and TPH1 and contain both DA and 5-HT, a dual neurotransmitter phenotype hitherto undescribed in the brain of any vertebrate. The similarities of CSF-c cells in chicken, Xenopus, and zebrafish suggest that these characteristics are inherited from the common ancestor of the Osteichthyes. A significant difference between tetrapods and teleosts is that teleosts possess an additional CSF-c cell population around the posterior recess (PR) that has emerged in specific groups of Actinopterygii. Our comparative analysis reveals that the hypothalamus in mammals and teleosts has evolved in a divergent manner: placental mammals have lost the monoaminergic CSF-c cells, while teleosts have increased their relative number.


Subject(s)
Biogenic Monoamines/metabolism , Brain/cytology , Cerebrospinal Fluid/physiology , Neurons/metabolism , Animals , Biological Evolution , Brain/metabolism , Chick Embryo , Chickens , ELAV Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Imaging, Three-Dimensional , Male , Neurons/classification , RNA, Messenger/metabolism , Vertebrates , Xenopus , Zebrafish , Zonula Occludens-1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...