Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 19(9): e1011632, 2023 09.
Article in English | MEDLINE | ID: mdl-37669293

ABSTRACT

Prion diseases are a group of inevitably fatal neurodegenerative disorders affecting numerous mammalian species, including Sapiens. Prions are composed of PrPSc, the disease specific conformation of the host encoded prion protein. Prion strains are operationally defined as a heritable phenotype of disease under controlled transmission conditions. Treatment of rodents with anti-prion drugs results in the emergence of drug-resistant prion strains and suggest that prion strains are comprised of a dominant strain and substrains. While much experimental evidence is consistent with this hypothesis, direct observation of substrains has not been observed. Here we show that replication of the dominant strain is required for suppression of a substrain. Based on this observation we reasoned that selective reduction of the dominant strain may allow for emergence of substrains. Using a combination of biochemical methods to selectively reduce drowsy (DY) PrPSc from biologically-cloned DY transmissible mink encephalopathy (TME)-infected brain resulted in the emergence of strains with different properties than DY TME. The selection methods did not occur during prion formation, suggesting the substrains identified preexisted in the DY TME-infected brain. We show that DY TME is biologically stable, even under conditions of serial passage at high titer that can lead to strain breakdown. Substrains therefore can exist under conditions where the dominant strain does not allow for substrain emergence suggesting that substrains are a common feature of prions. This observation has mechanistic implications for prion strain evolution, drug resistance and interspecies transmission.


Subject(s)
Prions , Animals , Prion Proteins/genetics , Brain , Phenotype , Serial Passage , Mammals
2.
Sci Rep ; 13(1): 441, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36624174

ABSTRACT

Synthetic prions, generated de novo from minimal, non-infectious components, cause bona fide prion disease in animals. Transmission of synthetic prions to hosts expressing syngeneic PrPC results in extended, variable incubation periods and incomplete attack rates. In contrast, murine synthetic prions (MSP) generated via PMCA with minimal cofactors readily infected mice and hamsters and rapidly adapted to both species. To investigate if hamster synthetic prions (HSP) generated under the same conditions as the MSP are also highly infectious, we inoculated hamsters with HSP generated with either hamster wild type or mutant (ΔG54, ΔG54/M139I, M139I/I205M) recombinant PrP. None of the inoculated hamsters developed clinical signs of prion disease, however, brain homogenate from HSPWT- and HSPΔG54-infected hamsters contained PrPSc, indicating subclinical infection. Serial passage in hamsters resulted in clinical disease at second passage accompanied by changes in incubation period and PrPSc conformational stability between second and third passage. These data suggest the HSP, in contrast to the MSP, are not comprised of PrPSc, and instead generate authentic PrPSc via deformed templating. Differences in infectivity between the MSP and HSP suggest that, under similar generation conditions, the amino acid sequence of PrP influences generation of authentic PrPSc.


Subject(s)
Prion Diseases , Prions , Cricetinae , Mice , Animals , Prion Proteins/genetics , Prion Proteins/metabolism , Amino Acid Sequence , Prions/metabolism , Prion Diseases/genetics , Prion Diseases/metabolism , Brain/metabolism
3.
Cell Tissue Res ; 392(1): 113-133, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35796874

ABSTRACT

Prion diseases are a group of inevitably fatal neurodegenerative disorders affecting numerous mammalian species, including humans. The existence of heritable phenotypes of disease in the natural host suggested that prions exist as distinct strains. Transmission of sheep scrapie to rodent models accelerated prion research, resulting in the isolation and characterization of numerous strains with distinct characteristics. These strains are grouped into categories based on the incubation period of disease in different strains of mice and also by how stable the strain properties were upon serial passage. These classical studies defined the host and agent parameters that affected strain properties, and, prior to the advent of the prion hypothesis, strain properties were hypothesized to be the result of mutations in a nucleic acid genome of a conventional pathogen. The development of the prion hypothesis challenged the paradigm of infectious agents, and, initially, the existence of strains was difficult to reconcile with a protein-only agent. In the decades since, much evidence has revealed how a protein-only infectious agent can perform complex biological functions. The prevailing hypothesis is that strain-specific conformations of PrPSc encode prion strain diversity. This hypothesis can provide a mechanism to explain the observed strain-specific differences in incubation period of disease, biochemical properties of PrPSc, tissue tropism, and subcellular patterns of pathology. This hypothesis also explains how prion strains mutate, evolve, and adapt to new species. These concepts are applicable to prion-like diseases such as Parkinson's and Alzheimer's disease, where evidence of strain diversity is beginning to emerge.


Subject(s)
Prion Diseases , Prions , Scrapie , Humans , Animals , Sheep , Scrapie/pathology , Phenotype , Mutation , Prion Diseases/genetics , Mammals
4.
PLoS Pathog ; 17(7): e1009765, 2021 07.
Article in English | MEDLINE | ID: mdl-34260664

ABSTRACT

Prions are comprised solely of PrPSc, the misfolded self-propagating conformation of the cellular protein, PrPC. Synthetic prions are generated in vitro from minimal components and cause bona fide prion disease in animals. It is unknown, however, if synthetic prions can cross the species barrier following interspecies transmission. To investigate this, we inoculated Syrian hamsters with murine synthetic prions. We found that all the animals inoculated with murine synthetic prions developed prion disease characterized by a striking uniformity of clinical onset and signs of disease. Serial intraspecies transmission resulted in a rapid adaptation to hamsters. During the adaptation process, PrPSc electrophoretic migration, glycoform ratios, conformational stability and biological activity as measured by protein misfolding cyclic amplification remained constant. Interestingly, the strain that emerged shares a strikingly similar transmission history, incubation period, clinical course of disease, pathology and biochemical and biological features of PrPSc with 139H, a hamster adapted form of the murine strain 139A. Combined, these data suggest that murine synthetic prions are comprised of bona fide PrPSc with 139A-like strain properties that efficiently crosses the species barrier and rapidly adapts to hamsters resulting in the emergence of a single strain. The efficiency and specificity of interspecies transmission of murine synthetic prions to hamsters, with relevance to brain derived prions, could be a useful model for identification of structure function relationships between PrPSc and PrPC from different species.


Subject(s)
PrPC Proteins/metabolism , PrPSc Proteins/metabolism , Prion Diseases/metabolism , Prion Diseases/transmission , Animals , Cricetinae , Mice , Species Specificity
5.
Prog Mol Biol Transl Sci ; 175: 77-119, 2020.
Article in English | MEDLINE | ID: mdl-32958242

ABSTRACT

Prions are a self-propagating misfolded conformation of a cellular protein. Prions are found in several eukaryotic organisms with mammalian prion diseases encompassing a wide range of disorders. The first recognized prion disease, the transmissible spongiform encephalopathies (TSEs), affect several species including humans. Alzheimer's disease, synucleinopathies, and tauopathies share a similar mechanism of self-propagation of the prion form of the disease-specific protein reminiscent of the infection process of TSEs. Strain diversity in prion disease is characterized by differences in the phenotype of disease that is hypothesized to be encoded by strain-specific conformations of the prion form of the disease-specific protein. Prion therapeutics that target the prion form of the disease-specific protein can lead to the emergence of drug-resistant strains of prions, consistent with the hypothesis that prion strains exist as a dynamic mixture of a dominant strain in combination with minor substrains. To overcome this obstacle, therapies that reduce or eliminate the template of conversion are efficacious, may reverse neuropathology, and do not result in the emergence of drug resistance. Recent advancements in preclinical diagnosis of prion infection may allow for a combinational approach that treats the prion form and the precursor protein to effectively treat prion diseases.


Subject(s)
Prion Diseases/therapy , Prions/metabolism , Animals , Humans , PrPSc Proteins/metabolism , Prion Diseases/prevention & control , Prion Diseases/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...