Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Sensors (Basel) ; 24(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931494

ABSTRACT

Due to limitations in current motion tracking technologies and increasing interest in alternative sensors for motion tracking both inside and outside the MRI system, in this study we share our preliminary experience with three alternative sensors utilizing diverse technologies and interactions with tissue to monitor motion of the body surface, respiratory-related motion of major organs, and non-respiratory motion of deep-seated organs. These consist of (1) a Pilot-Tone RF transmitter combined with deep learning algorithms for tracking liver motion, (2) a single-channel ultrasound transducer with deep learning for monitoring bladder motion, and (3) a 3D Time-of-Flight camera for observing the motion of the anterior torso surface. Additionally, we demonstrate the capability of these sensors to simultaneously capture motion data outside the MRI environment, which is particularly relevant for procedures like radiation therapy, where motion status could be related to previously characterized cyclical anatomical data. Our findings indicate that the ultrasound sensor can track motion in deep-seated organs (bladder) as well as respiratory-related motion. The Time-of-Flight camera offers ease of interpretation and performs well in detecting surface motion (respiration). The Pilot-Tone demonstrates efficacy in tracking bulk respiratory motion and motion of major organs (liver). Simultaneous use of all three sensors could provide complementary motion information outside the MRI bore, providing potential value for motion tracking during position-sensitive treatments such as radiation therapy.


Subject(s)
Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Respiration , Liver/diagnostic imaging , Liver/physiology , Movement/physiology , Urinary Bladder/diagnostic imaging , Urinary Bladder/physiology , Algorithms , Deep Learning , Motion , Ultrasonography/methods
2.
Magn Reson Med ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888139

ABSTRACT

PURPOSE: To introduce an alternative idea for fat suppression that is suited both for low-field applications where conventional fat-suppression approaches become ineffective due to narrow spectral separation and for applications with strong B0 homogeneities. METHODS: Separation of fat and water is achieved by sweeping the frequency of RF saturation pulses during continuous radial acquisition and calculating frequency-resolved images using regularized iterative reconstruction. Voxel-wise signal-response curves are extracted that reflect tissue's response to RF saturation at different frequencies and allow the classification into fat or water. This information is then utilized to generate water-only composite images. The principle is demonstrated in free-breathing abdominal and neck examinations using stack-of-stars 3D balanced SSFP (bSSFP) and gradient-recalled echo (GRE) sequences at 0.55 and 3T. Moreover, a potential extension toward quantitative fat/water separation is described. RESULTS: Experiments with a proton density fat fraction (PDFF) phantom validated the reliability of fat/water separation using signal-response curves. As demonstrated for abdominal imaging at 0.55T, the approach resulted in more uniform fat suppression without loss of water signal and in improved CSF-to-fat signal ratio. Moreover, the approach provided consistent fat suppression in 3T neck exams where conventional spectrally-selective fat saturation failed due to strong local B0 inhomogeneities. The feasibility of simultaneous fat/water quantification has been demonstrated in a PDFF phantom. CONCLUSION: The proposed principle achieves reliable fat suppression in low-field applications and adapts to high-field applications with strong B0 inhomogeneity. Moreover, the principle potentially provides a basis for developing an alternative approach for PDFF quantification.

3.
NMR Biomed ; : e5180, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775032

ABSTRACT

Ultrahigh field magnetic resonance imaging (MRI) (≥ 7 T) has the potential to provide superior spatial resolution and unique image contrast. Apart from radiofrequency transmit inhomogeneities in the body at this field strength, imaging of the upper abdomen faces additional challenges associated with motion-induced ghosting artifacts. To address these challenges, the goal of this work was to develop a technique for high-resolution free-breathing upper abdominal MRI at 7 T with a large field of view. Free-breathing 3D gradient-recalled echo (GRE) water-excited radial stack-of-stars data were acquired in seven healthy volunteers (five males/two females, body mass index: 19.6-24.8 kg/m2) at 7 T using an eight-channel transceive array coil. Two volunteers were also examined at 3 T. In each volunteer, the liver and kidney regions were scanned in two separate acquisitions. To homogenize signal excitation, the time-interleaved acquisition of modes (TIAMO) method was used with personalized pairs of B1 shims, based on a 23-s Cartesian fast low angle shot (FLASH) acquisition. Utilizing free-induction decay navigator signals, respiratory-gated images were reconstructed at a spatial resolution of 0.8 × 0.8 × 1.0 mm3. Two experienced radiologists rated the image quality and the impact of B1 inhomogeneity and motion-related artifacts on multipoint scales. The images of all volunteers showcased effective water excitation and were accurately corrected for respiratory motion. The impact of B1 inhomogeneity on image quality was minimal, underscoring the efficacy of the multitransmit TIAMO shim. The high spatial resolution allowed excellent depiction of small structures such as the adrenal glands, the proximal ureter, the diaphragm, and small blood vessels, although some streaking artifacts persisted in liver image data. In direct comparisons with 3 T performed for two volunteers, 7-T acquisitions demonstrated increases in signal-to-noise ratio of 77% and 58%. Overall, this work demonstrates the feasibility of free-breathing MRI in the upper abdomen at submillimeter spatial resolution at a magnetic field strength of 7 T.

4.
Magn Reson Med ; 90(1): 202-210, 2023 07.
Article in English | MEDLINE | ID: mdl-36763847

ABSTRACT

PURPOSE: To describe an inversion-recovery T1 -weighted radial stack-of-stars 3D gradient echo (GRE) sequence with comparable image quality to conventional MP-RAGE and to demonstrate how the radial acquisition scheme can be utilized for additional retrospective motion correction to improve robustness to head motion. METHODS: The proposed sequence, named MP-RAVE, has been derived from a previously described radial stack-of-stars 3D GRE sequence (RAVE) and includes a 180° inversion recovery pulse that is generated once for every stack of radial views. The sequence is combined with retrospective 3D motion correction to improve robustness. The effectiveness has been evaluated in phantoms and healthy volunteers and compared to conventional MP-RAGE acquisition. RESULTS: MP-RAGE and MP-RAVE anatomical images were rated "good" to "excellent" in overall image quality, with artifact level between "mild" and "no artifacts", and with no statistically significant difference between methods. During head motion, MP-RAVE showed higher inherent robustness with artifacts confined to local brain regions. In combination with motion correction, MP-RAVE provided noticeably improved image quality during different head motion and showed statistically significant improvement in image sharpness. CONCLUSION: MP-RAVE provides comparable image quality and contrast to conventional MP-RAGE with improved robustness to head motion. In combination with retrospective 3D motion correction, MP-RAVE can be a useful alternative to MP-RAGE, especially in non-cooperative or pediatric patients.


Subject(s)
Contrast Media , Imaging, Three-Dimensional , Humans , Child , Retrospective Studies , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
5.
Magn Reson Med ; 89(5): 1931-1944, 2023 05.
Article in English | MEDLINE | ID: mdl-36594436

ABSTRACT

PURPOSE: To increase the effectiveness of respiratory gating in radial stack-of-stars MRI, particularly when imaging at high spatial resolutions or with multiple echoes. METHODS: Free induction decay (FID) navigators were integrated into a three-dimensional gradient echo radial stack-of-stars pulse sequence. These navigators provided a motion signal with a high temporal resolution, which allowed single-spoke binning (SSB): each spoke at each phase encode step was sorted individually to the corresponding motion state of the respiratory signal. SSB was compared with spoke-angle binning (SAB), in which all phase encode steps of one projection angle were sorted without the use of additional navigator data. To illustrate the benefit of SSB over SAB, images of a motion phantom and of six free-breathing volunteers were reconstructed after motion-gating using either method. Image sharpness was quantitatively compared using image gradient entropies. RESULTS: The proposed method resulted in sharper images of the motion phantom and free-breathing volunteers. Differences in gradient entropy were statistically significant (p = 0.03) in favor of SSB. The increased accuracy of motion-gating led to a decrease of streaking artifacts in motion-gated four-dimensional reconstructions. To consistently estimate respiratory signals from the FID-navigator data, specific types of gradient spoiler waveforms were required. CONCLUSION: SSB allowed high-resolution motion-corrected MR imaging, even when acquiring multiple gradient echo signals or large acquisition matrices, without sacrificing accuracy of motion-gating. SSB thus relieves restrictions on the choice of pulse sequence parameters, enabling the use of motion-gated radial stack-of-stars MRI in a broader domain of clinical applications.


Subject(s)
Artifacts , Image Interpretation, Computer-Assisted , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Abdomen/diagnostic imaging , Motion , Respiration , Imaging, Three-Dimensional/methods
6.
Neurosurgery ; 92(3): 497-506, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36700674

ABSTRACT

BACKGROUND: Differentiating brain metastasis progression from radiation effects or radiation necrosis (RN) remains challenging. Golden-angle radial sparse parallel (GRASP) dynamic contrast-enhanced MRI provides high spatial and temporal resolution to analyze tissue enhancement, which may differ between tumor progression (TP) and RN. OBJECTIVE: To investigate the utility of longitudinal GRASP MRI in distinguishing TP from RN after gamma knife stereotactic radiosurgery (SRS). METHODS: We retrospectively evaluated 48 patients with brain metastasis managed with SRS at our institution from 2013 to 2020 who had GRASP MRI before and at least once after SRS. TP (n = 16) was pathologically confirmed. RN (n = 16) was diagnosed on either resected tissue without evidence of tumor or on lesion resolution on follow-up. As a reference, we included a separate group of patients with non-small-cell lung cancer that showed favorable response with tumor control and without RN on subsequent imaging (n = 16). Mean contrast washin and washout slopes normalized to the superior sagittal sinus were compared between groups. Receiver operating characteristic analysis was performed to determine diagnostic performance. RESULTS: After SRS, progression showed a significantly steeper washin slope than RN on all 3 follow-up scans (scan 1: 0.29 ± 0.16 vs 0.18 ± 0.08, P = .021; scan 2: 0.35 ± 0.19 vs 0.18 ± 0.09, P = .004; scan 3: 0.32 ± 0.12 vs 0.17 ± 0.07, P = .002). No significant differences were found in the post-SRS washout slope. Post-SRS washin slope differentiated progression and RN with an area under the curve (AUC) of 0.74, a sensitivity of 75%, and a specificity of 69% on scan 1; an AUC of 0.85, a sensitivity of 92%, and a specificity of 69% on scan 2; and an AUC of 0.87, a sensitivity of 63%, and a specificity of 100% on scan 3. CONCLUSION: Longitudinal GRASP MRI may help to differentiate metastasis progression from RN.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiation Injuries , Radiosurgery , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/surgery , Radiosurgery/methods , Retrospective Studies , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Radiation Injuries/diagnostic imaging , Radiation Injuries/etiology , Magnetic Resonance Imaging , Necrosis
7.
Sci Rep ; 12(1): 15099, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064872

ABSTRACT

Current dynamic MRA techniques are limited by temporal resolution and signal-to-noise penalties. GRASP, a fast and flexible MRI technique combining compressed-sensing, parallel imaging, and golden-angle radial sampling, acquires volumetric data continuously and can be reconstructed post hoc for user-defined applications. We describe a custom pipeline to retrospectively reconstruct ultrahigh temporal resolution, dynamic MRA from GRASP imaging obtained in the course of routine practice. GRASP scans were reconstructed using a custom implementation of the GRASP algorithm and post-processed with MeVisLab (MeVis Medical Solutions AG, Germany). Twenty consecutive examinations were scored by three neuroradiologists for angiographic quality of specific vascular segments and imaging artifacts using a 4-point scale. Unsubtracted images, baseline-subtracted images, and a temporal gradient dataset were available in 2D and 3D reconstructions. Distinct arterial and capillary phases were identified in all reconstructions, with a median of 2 frames (IQR1-3 and 2-3, respectively). Median rating for vascular segments was 3 (excellent) in all reconstructions and for nearly all segments, with excellent intraclass correlation (range 0.91-1.00). No cases were degraded by artifacts. GRASP-MRI obtained in routine practice can be seamlessly repurposed to produce high quality 4D MRA with 1-2-s resolved isotropic cerebrovascular angiography. Further exploration into diagnostic accuracy in disease-specific applications is warranted.


Subject(s)
Image Enhancement , Image Interpretation, Computer-Assisted , Angiography , Contrast Media , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Retrospective Studies
8.
Abdom Radiol (NY) ; 47(11): 3909-3915, 2022 11.
Article in English | MEDLINE | ID: mdl-35918543

ABSTRACT

PURPOSE: To determine which patient characteristics influence MRI scan time and how. METHODS: A database search of outpatient MRI liver examinations on 1.5T and 3T scanners from 1/1/2019 to 4/4/2019 was performed using an in-house developed software tool. Mean and median scan times were calculated. Patients who had difficulty following breathing instructions or completing breath-hold sequences were identified. Twenty-one additional patient characteristics were obtained from an Electronic Medical Record (EMR) search. RESULTS: Scan times were significantly increased for patients with breath-holding issues during the exam (N = 43, median = 23.98 min) versus not (N = 179, median = 17.5 min, p < 0.001). Among patients who had difficulty following breathing instructions/completing breath-hold sequences, a significant number were non-native English speakers (23/43, 53%) compared to those whose first language was English (48/179, 27%, p < 0.001). Breath-holding issues were also significantly more frequent for patients requiring a translator during the exam (15/43, 35%) versus those who did not (24/179, 13%, p < 0.001). No other patient characteristics showed a significance difference between those with breathing issues and those without. Patient characteristics that caused a significant number of scan times to be one standard deviation or more above the median were as follows: Breath-holding issues during exam (21/43 ≥ one SD above, 51%, versus 22/189 < one SD above, 12%, p < 0.001); and first language not English (16/71 ≥ one SD above, 23%, versus 55/189 < one SD above, 29%, p = 0.03). CONCLUSION: The ability to follow breathing instructions and complete breath-hold sequences had a significant impact on patient scan time. Patients who were not native English speakers had more frequent breathing issues during scans and significantly longer scans times compared native English speakers.


Subject(s)
Language , Magnetic Resonance Imaging , Breath Holding , Humans , Respiration
10.
Abdom Radiol (NY) ; 46(12): 5772-5780, 2021 12.
Article in English | MEDLINE | ID: mdl-34415411

ABSTRACT

PURPOSE: To develop a protocol for abdominal imaging on a prototype 0.55 T scanner and to benchmark the image quality against conventional 1.5 T exam. METHODS: In this prospective IRB-approved HIPAA-compliant study, 10 healthy volunteers were recruited and imaged. A commercial MRI system was modified to operate at 0.55 T (LF) with two different gradient performance levels. Each subject underwent non-contrast abdominal examinations on the 0.55 T scanner utilizing higher gradients (LF-High), lower adjusted gradients (LF-Adjusted), and a conventional 1.5 T scanner. The following pulse sequences were optimized: fat-saturated T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and Dixon T1-weighted imaging (T1WI). Three readers independently evaluated image quality in a blinded fashion on a 5-point Likert scale, with a score of 1 being non-diagnostic and 5 being excellent. An exact paired sample Wilcoxon signed-rank test was used to compare the image quality. RESULTS: Diagnostic image quality (overall image quality score ≥ 3) was achieved at LF in all subjects for T2WI, DWI, and T1WI with no more than one unit lower score than 1.5 T. The mean difference in overall image quality score was not significantly different between LF-High and LF-Adjusted for T2WI (95% CI - 0.44 to 0.44; p = 0.98), DWI (95% CI - 0.43 to 0.36; p = 0.92), and for T1 in- and out-of-phase imaging (95%C I - 0.36 to 0.27; p = 0.91) or T1 fat-sat (water only) images (95% CI - 0.24 to 0.18; p = 1.0). CONCLUSION: Diagnostic abdominal MRI can be performed on a prototype 0.55 T scanner, either with conventional or with reduced gradient performance, within an acquisition time of 10 min or less.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Abdomen/diagnostic imaging , Humans , Image Interpretation, Computer-Assisted , Prospective Studies
11.
Magn Reson Med ; 86(1): 97-114, 2021 07.
Article in English | MEDLINE | ID: mdl-33580909

ABSTRACT

PURPOSE: This study aimed to (i) develop Magnetization-Prepared Golden-angle RAdial Sparse Parallel (MP-GRASP) MRI using a stack-of-stars trajectory for rapid free-breathing T1 mapping and (ii) extend MP-GRASP to multi-echo acquisition (MP-Dixon-GRASP) for fat/water-separated (water-specific) T1 mapping. METHODS: An adiabatic non-selective 180° inversion-recovery pulse was added to a gradient-echo-based golden-angle stack-of-stars sequence for magnetization-prepared 3D single-echo or 3D multi-echo acquisition. In combination with subspace-based GRASP-Pro reconstruction, the sequence allows for standard T1 mapping (MP-GRASP) or fat/water-separated T1 mapping (MP-Dixon-GRASP), respectively. The accuracy of T1 mapping using MP-GRASP was evaluated in a phantom and volunteers (brain and liver) against clinically accepted reference methods. The repeatability of T1 estimation was also assessed in the phantom and volunteers. The performance of MP-Dixon-GRASP for water-specific T1 mapping was evaluated in a fat/water phantom and volunteers (brain and liver). RESULTS: ROI-based mean T1 values are correlated between the references and MP-GRASP in the phantom (R2 = 1.0), brain (R2 = 0.96), and liver (R2 = 0.73). MP-GRASP achieved good repeatability of T1 estimation in the phantom (R2 = 1.0), brain (R2 = 0.99), and liver (R2 = 0.82). Water-specific T1 is different from in-phase and out-of-phase composite T1 (composite T1 when fat and water signal are mixed in phase or out of phase) both in the phantom and volunteers. CONCLUSION: This work demonstrated the initial performance of MP-GRASP and MP-Dixon-GRASP MRI for rapid 3D T1 mapping and 3D fat/water-separated T1 mapping in the brain (without motion) and in the liver (during free breathing). With fat/water-separated T1 estimation, MP-Dixon-GRASP could be potentially useful for imaging patients with fatty-liver diseases.


Subject(s)
Magnetic Resonance Imaging , Water , Humans , Imaging, Three-Dimensional , Liver , Phantoms, Imaging , Respiration
12.
Clin Imaging ; 74: 15-18, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33421698

ABSTRACT

OBJECTIVE: To compare the image quality of subtracted and nonsubtracted images obtained using volumetric interpolated breath-hold exam (VIBE) and free breathing T1 weighted Golden-angle Radial Sparse Parallel (GRASP). METHODS: We retrospectively evaluated 27 consecutive patients who underwent MRI for the evaluation of renal masses. Contrast enhanced VIBE and free breathing GRASP imaging were performed, and subtraction images generated. Two radiologists performed quantitative and qualitative evaluations of image quality of nonsubtracted and subtracted data sets. Statistical analysis was performed using the Wilcoxon signed-rank test, paired t-test and kappa statistics. RESULTS: VIBE images scored statistically higher for the following parameters in the coronal and axial plane: sharpness, streak artifact, image noise, and overall image quality for standard and subtracted images (all P values P < 0.001). GRASP images had significantly less subtraction artifact in the coronal (P = 0.042) plane with a similar trend in the axial plane (P = 0.079). Interreader Kappa values for qualitative images scores were fair to good (0.23-0.71). Quantitative subtracted GRASP images had significant less subtraction artifact compared to VIBE in the anterior-posterior (3.9 mm SD 2.6 mm versus 5.8 mm SD 3.6 mm, P = 0.010), and craniocaudal direction (4.4 mm SD 2.9 mm versus 7.0 mm SD 5.3 mm, P = 0.010); a trend was seen in the left-right direction (2.6 mm SD 1.4 mm versus 4.0 mm SD 3.9 mm, P = 0.084). CONCLUSION: VIBE images have significantly better image quality than free breathing GRASP images, however free breathing GRASP images have significantly less subtraction artifact.


Subject(s)
Breath Holding , Image Enhancement , Artifacts , Contrast Media , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Retrospective Studies
13.
J Nucl Cardiol ; 28(5): 2194-2204, 2021 10.
Article in English | MEDLINE | ID: mdl-31898004

ABSTRACT

BACKGROUND: Hybrid PET/MR imaging has significant potential in cardiology due to its combination of molecular PET imaging and cardiac MR. Multi-tissue-class MR-based attenuation correction (MRAC) is necessary for accurate PET quantification. Moreover, for thoracic PET imaging, respiration is known to lead to misalignments of MRAC and PET data that result in PET artifacts. These factors can be addressed by using multi-echo MR for tissue segmentation and motion-robust or motion-gated acquisitions. However, the combination of these strategies is not routinely available and can be prone to errors. In this study, we examine the qualitative and quantitative impacts of multi-class MRAC compared to a more widely available simple two-class MRAC for cardiac PET/MR. METHODS AND RESULTS: In a cohort of patients with cardiac sarcoidosis, we acquired MRAC data using multi-echo radial gradient-echo MR imaging. Water-fat separation was used to produce attenuation maps with up to 4 tissue classes including water-based soft tissue, fat, lung, and background air. Simultaneously acquired 18F-fluorodeoxyglucose PET data were subsequently reconstructed using each attenuation map separately. PET uptake values were measured in the myocardium and compared between different PET images. The inclusion of lung and subcutaneous fat in the MRAC maps significantly affected the quantification of 18F-fluorodeoxyglucose activity in the myocardium but only moderately altered the appearance of the PET image without introduction of image artifacts. CONCLUSION: Optimal MRAC for cardiac PET/MR applications should include segmentation of all tissues in combination with compensation for the respiratory-related motion of the heart. Simple two-class MRAC is adequate for qualitative clinical assessment.


Subject(s)
Heart/diagnostic imaging , Magnetic Resonance Angiography/standards , Positron Emission Tomography Computed Tomography/standards , Aged , Cohort Studies , Female , Fluorodeoxyglucose F18/administration & dosage , Fluorodeoxyglucose F18/therapeutic use , Heart/physiopathology , Humans , Magnetic Resonance Angiography/methods , Magnetic Resonance Angiography/statistics & numerical data , Male , Middle Aged , Positron Emission Tomography Computed Tomography/methods , Positron Emission Tomography Computed Tomography/statistics & numerical data , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/therapeutic use
14.
Magn Reson Med ; 85(5): 2672-2685, 2021 05.
Article in English | MEDLINE | ID: mdl-33306216

ABSTRACT

PURPOSE: To describe an approach for detection of respiratory signals using a transmitted radiofrequency (RF) reference signal called Pilot-Tone (PT) and to use the PT signal for creation of motion-resolved images based on 3D stack-of-stars imaging under free-breathing conditions. METHODS: This work explores the use of a reference RF signal generated by a small RF transmitter, placed outside the MR bore. The reference signal is received in parallel to the MR signal during each readout. Because the received PT amplitude is modulated by the subject's breathing pattern, a respiratory signal can be obtained by detecting the strength of the received PT signal over time. The breathing-induced PT signal modulation can then be used for reconstructing motion-resolved images from free-breathing scans. The PT approach was tested in volunteers using a radial stack-of-stars 3D gradient echo (GRE) sequence with golden-angle acquisition. RESULTS: Respiratory signals derived from the proposed PT method were compared to signals from a respiratory cushion sensor and k-space-center-based self-navigation under different breathing conditions. Moreover, the accuracy was assessed using a modified acquisition scheme replacing the golden-angle scheme by a zero-angle acquisition. Incorporating the PT signal into eXtra-Dimensional (XD) motion-resolved reconstruction led to improved image quality and clearer anatomical depiction of the lung and liver compared to k-space-center signal and motion-averaged reconstruction, when binned into 6, 8, and 10 motion states. CONCLUSION: PT is a novel concept for tracking respiratory motion. Its small dimension (8 cm), high sampling rate, and minimal interaction with the imaging scan offers great potential for resolving respiratory motion.


Subject(s)
Artifacts , Respiratory-Gated Imaging Techniques , Humans , Image Enhancement , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Motion , Respiration
15.
Magn Reson Med ; 84(5): 2592-2605, 2020 11.
Article in English | MEDLINE | ID: mdl-32301168

ABSTRACT

PURPOSE: To develop a free-breathing hepatic fat and R2∗ quantification method by extending a previously described stack-of-stars model-based fat-water separation technique with additional modeling of the transverse relaxation rate R2∗ . METHODS: The proposed technique combines motion-robust radial sampling using a stack-of-stars bipolar multi-echo 3D GRE acquisition with iterative model-based fat-water separation. Parallel-Imaging and Compressed-Sensing principles are incorporated through modeling of the coil-sensitivity profiles and enforcement of total-variation (TV) sparsity on estimated water, fat, and R2∗ parameter maps. Water and fat signals are used to estimate the confounder-corrected proton-density fat fraction (PDFF). Two strategies for handling respiratory motion are described: motion-averaged and motion-resolved reconstruction. Both techniques were evaluated in patients (n = 14) undergoing a hepatobiliary research protocol at 3T. PDFF and R2∗ parameter maps were compared to a breath-holding Cartesian reference approach. RESULTS: Linear regression analyses demonstrated strong (r > 0.96) and significant (P ≪ .01) correlations between radial and Cartesian PDFF measurements for both the motion-averaged reconstruction (slope: 0.90; intercept: 0.07%) and the motion-resolved reconstruction (slope: 0.90; intercept: 0.11%). The motion-averaged technique overestimated hepatic R2∗ values (slope: 0.35; intercept: 30.2 1/s) compared to the Cartesian reference. However, performing a respiratory-resolved reconstruction led to better R2∗ value consistency (slope: 0.77; intercept: 7.5 1/s). CONCLUSIONS: The proposed techniques are promising alternatives to conventional Cartesian imaging for fat and R2∗ quantification in patients with limited breath-holding capabilities. For accurate R2∗ estimation, respiratory-resolved reconstruction should be used.


Subject(s)
Magnetic Resonance Imaging , Non-alcoholic Fatty Liver Disease , Breath Holding , Humans , Liver/diagnostic imaging , Respiration
16.
NMR Biomed ; 33(5): e4240, 2020 05.
Article in English | MEDLINE | ID: mdl-31977117

ABSTRACT

Retrospective electrocardiogram-gated, 2D phase-contrast (PC) flow MRI is routinely used in clinical evaluation of valvular/vascular disease in pediatric patients with congenital heart disease (CHD). In patients not requiring general anesthesia, clinical standard PC is conducted with free breathing for several minutes per slice with averaging. In younger patients under general anesthesia, clinical standard PC is conducted with breath-holding. One approach to overcome this limitation is using either navigator gating or self-navigation of respiratory motion, at the expense of lengthening scan times. An alternative approach is using highly accelerated, free-breathing, real-time PC (rt-PC) MRI, which to date has not been evaluated in CHD patients. The purpose of this study was to develop a 38.4-fold accelerated 2D rt-PC pulse sequence using radial k-space sampling and compressed sensing with 1.5 × 1.5 × 6.0 mm3 nominal spatial resolution and 40 ms nominal temporal resolution, and evaluate whether it is capable of accurately measuring flow in 17 pediatric patients (aortic valve, pulmonary valve, right and left pulmonary arteries) compared with clinical standard 2D PC (either breath-hold or free breathing). For clinical translation, we implemented an integrated reconstruction pipeline capable of producing DICOMs of the order of 2 min per time series (46 frames). In terms of association, forward volume, backward volume, regurgitant fraction, and peak velocity at peak systole measured with standard PC and rt-PC were strongly correlated (R2 > 0.76; P < 0.001). Compared with clinical standard PC, in terms of agreement, forward volume (mean difference = 1.4% (3.0% of mean)) and regurgitant fraction (mean difference = -2.5%) were in good agreement, whereas backward volume (mean difference = -1.1 mL (28.2% of mean)) and peak-velocity at peak systole (mean difference = -21.3 cm/s (17.2% of mean)) were underestimated by rt-PC. This study demonstrates that the proposed rt-PC with the said spatial resolution and temporal resolution produces relatively accurate forward volumes and regurgitant fractions but underestimates backward volumes and peak velocities at peak systole in pediatric patients with CHD.


Subject(s)
Algorithms , Heart Defects, Congenital/diagnostic imaging , Magnetic Resonance Imaging , Child , Electrocardiography , Feasibility Studies , Female , Humans , Linear Models , Male , Phantoms, Imaging
17.
Magn Reson Med ; 84(1): 128-141, 2020 07.
Article in English | MEDLINE | ID: mdl-31762101

ABSTRACT

PURPOSE: To study the effects of magnetization transfer (MT, in which a semi-solid spin pool interacts with the free pool), in the context of magnetic resonance fingerprinting (MRF). METHODS: Simulations and phantom experiments were performed to study the impact of MT on the MRF signal and its potential influence on T1 and T2 estimation. Subsequently, an MRF sequence implementing off-resonance MT pulses and a dictionary with an MT dimension, generated by incorporating a two-pool model, were used to estimate the fractional pool size in addition to the B1+ , T1 , and T2 values. The proposed method was evaluated in the human brain. RESULTS: Simulations and phantom experiments showed that an MRF signal obtained from a cross-linked bovine serum sample is influenced by MT. Using a dictionary based on an MT model, a better match between simulations and acquired MR signals can be obtained (NRMSE 1.3% vs. 4.7%). Adding off-resonance MT pulses can improve the differentiation of MT from T1 and T2 . In vivo results showed that MT affects the MRF signals from white matter (fractional pool-size ~16%) and gray matter (fractional pool-size ~10%). Furthermore, longer T1 (~1060 ms vs. ~860 ms) and T2 values (~47 ms vs. ~35 ms) can be observed in white matter if MT is accounted for. CONCLUSION: Our experiments demonstrated a potential influence of MT on the quantification of T1 and T2 with MRF. A model that encompasses MT effects can improve the accuracy of estimated relaxation parameters and allows quantification of the fractional pool size.


Subject(s)
Brain , Magnetic Resonance Imaging , Animals , Brain/diagnostic imaging , Cattle , Humans , Magnetic Resonance Spectroscopy , Phantoms, Imaging , Reproducibility of Results
18.
Clin Imaging ; 55: 112-118, 2019.
Article in English | MEDLINE | ID: mdl-30807926

ABSTRACT

BACKGROUND: T1-weighted post-contrast MRI is essential in brain protocols. We demonstrate the feasibility and utility of a 3D non-Cartesian radial acquisition in children. PURPOSE: To compare bulk motion artifacts, image quality, and lesion conspicuity in 3D T1-weighted post-contrast brain MRI between a new fat-suppressed radial gradient-echo and a traditional non-fat-suppressed inversion-recovery Cartesian gradient-echo sequence. MATERIAL AND METHODS: Images from 53 patients acquired at 3 Tesla were compared. Three radiologists rated the images in three categories, including the presence of bulk motion and whether it impacted diagnosis, whether one sequence was preferred over the other in overall image quality and conspicuity of vascular structures and lesions, and whether diagnosis was possible if only the new fat-suppressed radial acquisition was obtained. RESULTS: The Fleiss' kappa for inter-rater agreement was 0.67 for bulk motion and 0.54 for sequence preference. Of the 53 cases, 56% were identified to have significant motion on conventional imaging, while only 13% had motion artifacts on the radial acquisition (p < 0.05). There were no cases where motion was seen on the radial acquisition but not on conventional imaging. Both sequences were equally preferred in 87% of the cases. All radiologists agreed that the radial approach had lower gray-white matter contrast than the conventional inversion-recovery method, but preferred the former for making diagnosis in uncooperative patients. CONCLUSION: We demonstrate the potential utility of a fat-suppressed 3D T1-weighted post-contrast brain gradient-echo sequence in children. The technique is useful in non-sedate pediatric imaging due to its reduced sensitivity to bulk motion.


Subject(s)
Brain/diagnostic imaging , Contrast Media , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Adolescent , Adult , Artifacts , Child , Child, Preschool , Female , Gray Matter , Humans , Infant , Infant, Newborn , Male , Motion , White Matter , Young Adult
19.
AJR Am J Roentgenol ; 212(4): 855-858, 2019 04.
Article in English | MEDLINE | ID: mdl-30807221

ABSTRACT

OBJECTIVE: The purpose of this study is to increase the value of MRI by reengineering the MRI workflow at a new imaging center to shorten the interval (i.e., turnaround time) between each patient examination by at least 5 minutes. MATERIALS AND METHODS: The elements of the MRI workflow that were optimized included the use of dockable tables, the location of patient preparation rooms, the number of doors per scanning room, and the storage location and duplication of coils. Turnaround times at the new center and at two existing centers were measured both for all patients and for situations when the next patient was ready to be brought into the scanner room after the previous patient's examination was completed. RESULTS: Workflow optimizations included the use of dockable tables, dedicated patient preparation rooms, two doors in each MRI room, positioning the scanner to provide the most direct path to the scanner, and coil storage in the preparation rooms, with duplication of the most frequently used coils. At the new imaging center, the median and mean (± SD) turnaround times for situations in which patients were ready for scanning were 115 seconds (95% CI, 113-117 seconds) and 132 ± 72 seconds (95% CI, 129-135 seconds), respectively, and the median and mean turnaround times for all situations were 141 seconds (95% CI, 137-146 seconds) and 272 ± 270 seconds (95% CI, 263-282 seconds), respectively. For existing imaging centers, the median and mean turnaround times for situations in which patients were ready for scanning were 430 seconds (95% CI, 424-434 seconds) and 460 ± 156 seconds (95% CI, 455-465 seconds), respectively, and the median and mean turnaround times for all situations were 481 seconds (95% CI, 474-486 seconds) and 537 ± 219 seconds (95% CI, 532-543 seconds), respectively. CONCLUSION: The optimized MRI workflow resulted in a mean time savings of 5 minutes 28 seconds per patient.


Subject(s)
Efficiency, Organizational , Facility Design and Construction , Magnetic Resonance Imaging , Workflow , Humans , Quality Improvement , Time and Motion Studies
20.
Neuroradiology ; 61(3): 341-349, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30666351

ABSTRACT

PURPOSE: MRI methods that have reduced sensitivity to motion are attractive in pediatric applications. In spine imaging, physiologic motion such as respiration and cerebrospinal fluid pulsation can hamper diagnostic image quality. We compare a 3D T1-weighted non-Cartesian radial acquisition with a conventional Cartesian 2D turbo-spin-echo (TSE) acquisition in axial post-contrast spine imaging at 3T. METHODS: Thirty-two patients (mean age 12.2 ± 5.3 years) scheduled for routine clinical spine exams with contrast were enrolled. Three pediatric neuroradiologists compared the two sequences and assessed the presence of motion, the conspicuity of nerve roots, and whether one of the sequences was preferred in visualizing pathology using Likert scales. RESULTS: The Fleiss' kappa statistic for inter-rater agreement was 0.29 (95% confidence interval, 0.15-0.43) for the presence of motion, 0.30 (0.21-0.38) for conspicuity, and 0.37 (0.19-0.55) for sequence preference. Radial images were less sensitive to motion than TSE (p < 0.01). Motion and consequent artifacts were present in all TSE cases, while it was absent in 51% of the radial cases. In depicting nerve roots, radial images were superior in the cervical (p < 0.05), thoracic (p < 0.01), and lumbar spines (p < 0.01). Lastly, in 28 of the 32 patients who demonstrated contrast-enhancing pathology, radial images were preferred in 51% of the cases, while both sequences were equally preferred in 41% of the cases. CONCLUSION: We demonstrate the potential utility of radial MRI in post-contrast spine imaging. The free-breathing method is robust in generating diagnostic image quality and is superior in visualizing nerve roots and extramedullary metastases than traditional Cartesian TSE acquisitions.


Subject(s)
Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Spinal Diseases/diagnostic imaging , Artifacts , Child , Contrast Media , Female , Humans , Image Enhancement/methods , Male , Motion
SELECTION OF CITATIONS
SEARCH DETAIL
...