Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(3): 1596-1605, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31907313

ABSTRACT

Hybrid-poplar tree plantations provide a source for biofuel and biomass, but they also increase forest isoprene emissions. The consequences of increased isoprene emissions include higher rates of tropospheric ozone production, increases in the lifetime of methane, and increases in atmospheric aerosol production, all of which affect the global energy budget and/or lead to the degradation of air quality. Using RNA interference (RNAi) to suppress isoprene emission, we show that this trait, which is thought to be required for the tolerance of abiotic stress, is not required for high rates of photosynthesis and woody biomass production in the agroforest plantation environment, even in areas with high levels of climatic stress. Biomass production over 4 y in plantations in Arizona and Oregon was similar among genetic lines that emitted or did not emit significant amounts of isoprene. Lines that had substantially reduced isoprene emission rates also showed decreases in flavonol pigments, which reduce oxidative damage during extremes of abiotic stress, a pattern that would be expected to amplify metabolic dysfunction in the absence of isoprene production in stress-prone climate regimes. However, compensatory increases in the expression of other proteomic components, especially those associated with the production of protective compounds, such as carotenoids and terpenoids, and the fact that most biomass is produced prior to the hottest and driest part of the growing season explain the observed pattern of high biomass production with low isoprene emission. Our results show that it is possible to reduce the deleterious influences of isoprene on the atmosphere, while sustaining woody biomass production in temperate agroforest plantations.


Subject(s)
Atmosphere , Hemiterpenes/biosynthesis , Hybridization, Genetic , Populus/growth & development , Populus/metabolism , Air Pollution , Arizona , Biofuels , Biomass , Butadienes , Carbon Dioxide/metabolism , Carotenoids/metabolism , Climate , Oregon , Photosynthesis , Plant Leaves/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plants, Genetically Modified/metabolism , Populus/genetics , Proteome , RNA Interference , Seasons , Stress, Physiological , Terpenes/metabolism , Thermotolerance/physiology , Wood
2.
Plant Cell ; 31(2): 346-367, 2019 02.
Article in English | MEDLINE | ID: mdl-30705134

ABSTRACT

Throughout the temperate zones, plants face combined drought and heat spells in increasing frequency and intensity. Here, we compared periodic (intermittent, i.e., high-frequency) versus chronic (continuous, i.e., high-intensity) drought-heat stress scenarios in gray poplar (Populus× canescens) plants for phenotypic and transcriptomic effects during stress and after recovery. Photosynthetic productivity after stress recovery exceeded the performance of poplar trees without stress experience. We analyzed the molecular basis of this stress-related memory phenotype and investigated gene expression responses across five major tree compartments including organs and wood tissues. For each of these tissue samples, transcriptomic changes induced by the two stress scenarios were highly similar during the stress phase but strikingly divergent after recovery. Characteristic molecular response patterns were found across tissues but involved different genes in each tissue. Only a small fraction of genes showed similar stress and recovery expression profiles across all tissues, including type 2C protein phosphatases, the LATE EMBRYOGENESIS ABUNDANT PROTEIN4-5 genes, and homologs of the Arabidopsis (Arabidopsis thaliana) transcription factor HOMEOBOX7. Analysis of the predicted transcription factor regulatory networks for these genes suggested that a complex interplay of common and tissue-specific components contributes to the coordination of post-recovery responses to stress in woody plants.


Subject(s)
Plant Proteins/metabolism , Populus/metabolism , Droughts , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Populus/genetics , Stress, Physiological
3.
J Proteomics ; 128: 321-32, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26248320

ABSTRACT

Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement.


Subject(s)
Aquaporins/metabolism , Plant Proteins/metabolism , Plant Transpiration/physiology , Populus/physiology , Proteome/metabolism , RNA Interference/physiology , Down-Regulation/physiology , Gene Silencing/physiology , Plant Leaves , Plants, Genetically Modified/physiology
4.
Plant Cell ; 25(11): 4737-54, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24220631

ABSTRACT

Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Herbivory , Populus/physiology , Volatile Organic Compounds/metabolism , Alcohols/metabolism , Animals , Cytochrome P-450 Enzyme System/genetics , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Genome, Plant , Mortality , Moths/drug effects , Moths/growth & development , Moths/physiology , Nitriles/metabolism , Oximes/metabolism , Oximes/pharmacology , Phenylalanine/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Populus/genetics , Populus/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...