Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 13(5): e0185822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36154190

ABSTRACT

Despite having a highly reduced genome, Chlamydia trachomatis undergoes a complex developmental cycle in which the bacteria differentiate between the following two functionally and morphologically distinct forms: the infectious, nonreplicative elementary body (EB) and the noninfectious, replicative reticulate body (RB). The transitions between EBs and RBs are not mediated by division events that redistribute intracellular proteins. Rather, both primary (EB to RB) and secondary (RB to EB) differentiation likely require bulk protein turnover. One system for targeted protein degradation is the trans-translation system for ribosomal rescue, where polypeptides stalled during translation are marked with an SsrA tag encoded by a hybrid tRNA-mRNA, tmRNA. ClpX recognizes the SsrA tag, leading to ClpXP-mediated degradation. We hypothesize that ClpX functions in chlamydial differentiation through targeted protein degradation. We found that mutation of a key residue (R230A) within the specific motif in ClpX associated with the recognition of SsrA-tagged substrates resulted in abrogated secondary differentiation while not reducing chlamydial replication or developmental cycle progression as measured by transcripts. Furthermore, inhibition of trans-translation through chemical and targeted genetic approaches also impeded chlamydial development. Knockdown of tmRNA and subsequent complementation with an allele mutated in the SsrA tag closely phenocopied the overexpression of ClpXR230A, thus suggesting that ClpX recognition of SsrA-tagged substrates plays a critical function in secondary differentiation. Taken together, these data provide mechanistic insight into the requirements for transitions between chlamydial developmental forms. IMPORTANCE Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections and preventable infectious blindness. This unique organism undergoes developmental transitions between infectious, nondividing forms and noninfectious, dividing forms. Therefore, the chlamydial developmental cycle is an attractive target for Chlamydia-specific antibiotics, which would minimize effects of broad-spectrum antibiotics on the spread of antibiotic resistance in other organisms. However, the lack of knowledge about chlamydial development on a molecular level impedes the identification of specific, druggable targets. This work describes a mechanism through which both the fundamental processes of trans-translation and proteomic turnover by ClpXP contribute to chlamydial differentiation, a critical facet of chlamydial growth and survival. Given the almost universal presence of trans-translation and ClpX in eubacteria, this mechanism may be conserved in developmental cycles of other bacterial species. Additionally, this study expands the fields of trans-translation and Clp proteases by emphasizing the functional diversity of these systems throughout bacterial evolution.


Subject(s)
Chlamydia trachomatis , Proteomics , Chlamydia trachomatis/metabolism , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Peptides/metabolism , Anti-Bacterial Agents/metabolism , RNA, Messenger/metabolism , Bacterial Proteins/metabolism
2.
mBio ; 11(5)2020 09 01.
Article in English | MEDLINE | ID: mdl-32873765

ABSTRACT

Chlamydia trachomatis is an obligate intracellular bacterium that undergoes a complex developmental cycle in which the bacterium differentiates between two functionally and morphologically distinct forms, the elementary body (EB) and reticulate body (RB), each of which expresses its own specialized repertoire of proteins. Both primary (EB to RB) and secondary (RB to EB) differentiations require protein turnover, and we hypothesize that proteases are critical for mediating differentiation. The Clp protease system is well conserved in bacteria and important for protein turnover. Minimally, the system relies on a serine protease subunit, ClpP, and an AAA+ ATPase, such as ClpX, that recognizes and unfolds substrates for ClpP degradation. In Chlamydia, ClpX is encoded within an operon 3' to clpP2 We present evidence that the chlamydial ClpX and ClpP2 orthologs are essential to organism viability and development. We demonstrate here that chlamydial ClpX is a functional ATPase and forms the expected homohexamer in vitro Overexpression of a ClpX mutant lacking ATPase activity had a limited impact on DNA replication or secondary differentiation but, nonetheless, reduced EB viability with observable defects in EB morphology noted. Conversely, overexpression of a catalytically inactive ClpP2 mutant significantly impacted developmental cycle progression by reducing the overall number of organisms. Blocking clpP2X transcription using CRISPR interference led to a decrease in bacterial growth, and this effect was complemented in trans by a plasmid copy of clpP2 Taken together, our data indicate that ClpX and the associated ClpP2 serve distinct functions in chlamydial developmental cycle progression and differentiation.IMPORTANCEChlamydia trachomatis is the leading cause of infectious blindness globally and the most reported bacterial sexually transmitted infection both domestically and internationally. Given the economic burden, the lack of an approved vaccine, and the use of broad-spectrum antibiotics for treatment of infections, an understanding of chlamydial growth and development is critical for the advancement of novel targeted antibiotics. The Clp proteins comprise an important and conserved protease system in bacteria. Our work highlights the importance of the chlamydial Clp proteins to this clinically important bacterium. Additionally, our study implicates the Clp system playing an integral role in chlamydial developmental cycle progression, which may help establish models of how Chlamydia spp. and other bacteria progress through their respective developmental cycles. Our work also contributes to a growing body of Clp-specific research that underscores the importance and versatility of this system throughout bacterial evolution and further validates Clp proteins as drug targets.


Subject(s)
Adenosine Triphosphatases/metabolism , Bacterial Proteins/genetics , Chlamydia trachomatis/growth & development , Chlamydia trachomatis/genetics , Endopeptidase Clp/genetics , Serine Endopeptidases/genetics , Adenosine Triphosphatases/genetics , Animals , Bacterial Proteins/metabolism , Cell Line , Chlamydia trachomatis/metabolism , Endopeptidase Clp/metabolism , Gene Expression Regulation, Bacterial , HeLa Cells , Humans , Mice , Microbial Viability/genetics , Serine Endopeptidases/metabolism
4.
J Med Chem ; 63(8): 4370-4387, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32227948

ABSTRACT

Chlamydia trachomatis is the most common sexually transmitted bacterial disease globally and the leading cause of infertility and preventable infectious blindness (trachoma) in the world. Unfortunately, there is no FDA-approved treatment specific for chlamydial infections. We recently reported two sulfonylpyridines that halt the growth of the pathogen. Herein, we present a SAR of the sulfonylpyridine molecule by introducing substituents on the aromatic regions. Biological evaluation studies showed that several analogues can impair the growth of C. trachomatis without affecting host cell viability. The compounds did not kill other bacteria, indicating selectivity for Chlamydia. The compounds presented mild toxicity toward mammalian cell lines. The compounds were found to be nonmutagenic in a Drosophila melanogaster assay and exhibited a promising stability in both plasma and gastric fluid. The presented results indicate this scaffold is a promising starting point for the development of selective antichlamydial drugs.


Subject(s)
Chlamydia trachomatis/drug effects , Peptide Hydrolases/metabolism , Protease Inhibitors/chemical synthesis , Pyridines/chemical synthesis , Animals , Cell Survival/drug effects , Cell Survival/physiology , Chlamydia trachomatis/physiology , Chlorobenzenes/chemical synthesis , Chlorobenzenes/pharmacology , Dose-Response Relationship, Drug , Drosophila melanogaster , HeLa Cells , Humans , Mice , Protease Inhibitors/pharmacology , Pyridines/pharmacology
6.
J Bacteriol ; 201(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30396899

ABSTRACT

Members of Chlamydia are obligate intracellular bacteria that differentiate between two distinct functional and morphological forms during their developmental cycle, elementary bodies (EBs) and reticulate bodies (RBs). EBs are nondividing small electron-dense forms that infect host cells. RBs are larger noninfectious replicative forms that develop within a membrane-bound vesicle, termed an inclusion. Given the unique properties of each developmental form of this bacterium, we hypothesized that the Clp protease system plays an integral role in proteomic turnover by degrading specific proteins from one developmental form or the other. Chlamydia spp. have five uncharacterized clp genes, clpX, clpC, two clpP paralogs, and clpB In other bacteria, ClpC and ClpX are ATPases that unfold and feed proteins into the ClpP protease to be degraded, and ClpB is a deaggregase. Here, we focused on characterizing the ClpP paralogs. Transcriptional analyses and immunoblotting determined that these genes are expressed midcycle. Bioinformatic analyses of these proteins identified key residues important for activity. Overexpression of inactive clpP mutants in Chlamydia spp. suggested independent function of each ClpP paralog. To further probe these differences, we determined interactions between the ClpP proteins using bacterial two-hybrid assays and native gel analysis of recombinant proteins. Homotypic interactions of the ClpP proteins, but not heterotypic interactions between the ClpP paralogs, were detected. Interestingly, protease activity of ClpP2, but not ClpP1, was detected in vitro This activity was stimulated by antibiotics known to activate ClpP, which also blocked chlamydial growth. Our data suggest the chlamydial ClpP paralogs likely serve distinct and critical roles in this important pathogen.IMPORTANCEChlamydia trachomatis is the leading cause of preventable infectious blindness and of bacterial sexually transmitted infections worldwide. Chlamydiae are developmentally regulated obligate intracellular pathogens that alternate between two functional and morphologic forms, with distinct repertoires of proteins. We hypothesize that protein degradation is a critical aspect to the developmental cycle. A key system involved in protein turnover in bacteria is the Clp protease system. Here, we characterized the two chlamydial ClpP paralogs by examining their expression in Chlamydia spp., their ability to oligomerize, and their proteolytic activity. This work will help understand the evolutionarily diverse Clp proteases in the context of intracellular organisms, which may aid in the study of other clinically relevant intracellular bacteria.


Subject(s)
Chlamydia trachomatis/enzymology , Chlamydia trachomatis/growth & development , Endopeptidase Clp/metabolism , Blotting, Western , Cell Line , Chlamydia trachomatis/genetics , Computational Biology , Endopeptidase Clp/genetics , Epithelial Cells/microbiology , Gene Expression Profiling , Humans , Protein Interaction Mapping , Proteolysis , Proteome/analysis , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...