Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Sci Rep ; 8(1): 5330, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29593313

ABSTRACT

Kochia scoparia is a troublesome weed across the Great Plains of North America. Glyphosate and dicamba have been used for decades to control K. scoparia. Due to extensive selection, glyphosate- and dicamba-resistant (GDR) K. scoparia have evolved in the USA. Herbicide mixtures are routinely used to improve weed control. Herbicide interactions if result in an antagonistic effect can significantly affect the management of weeds, such as K. scoparia. To uncover the interaction of glyphosate and dicamba when applied in combination in K. scoparia management the efficacies of different doses of glyphosate plus dicamba were evaluated under greenhouse and field conditions using GDR and a known glyphosate- and dicamba-susceptible (GDS) K. scoparia. The results of greenhouse and field studies suggest that the combination of glyphosate and dicamba application controlled GDS, but glyphosate alone provided a better control of GDR K. scoparia compared to glyphosate plus dicamba combinations. Furthermore, investigation of the basis of this response suggested glyphosate and dicamba interact antagonistically and consequently, the translocation of both herbicides was significantly reduced resulting in poor control of K. scoparia. Therefore, a combination of glyphosate plus dicamba may not be a viable option to control GDR K. scoparia.


Subject(s)
Bassia scoparia/metabolism , Dicamba/metabolism , Glycine/analogs & derivatives , Herbicide Resistance , Herbicides/metabolism , Plant Development , Bassia scoparia/drug effects , Biological Transport , Carbon Isotopes/metabolism , Dicamba/pharmacology , Dose-Response Relationship, Drug , Glycine/metabolism , Herbicides/pharmacology , Plant Development/drug effects , Weed Control , Glyphosate
2.
Mem. Inst. Oswaldo Cruz ; 109(8): 1064-1069, 12/2014. tab
Article in English | LILACS | ID: lil-732595

ABSTRACT

In sandflies, the absence of the peritrophic matrix (PM) affects the rate of blood digestion. Also, the kinetics of PM secretion varies according to species. We previously characterised PpChit1, a midgut-specific chitinase secreted in Phlebotomus papatasi (PPIS) that is involved in the maturation of the PM and showed that antibodies against PpChit1 reduce the chitinolytic activity in the midgut of several sandfly species. Here, sandflies were fed on red blood cells reconstituted with naïve or anti-PpChit1 sera and assessed for fitness parameters that included blood digestion, oviposition onset, number of eggs laid, egg bouts, average number of eggs per bout and survival. In PPIS, anti-PpChit1 led to a one-day delay in the onset of egg laying, with flies surviving three days longer compared to the control group. Anti-PpChit1 also had a negative effect on overall ability of flies to lay eggs, as several gravid females from all three species were unable to lay any eggs despite having lived longer than control flies. Whereas the longer survival might be associated with improved haeme scavenging ability by the PM, the inability of females to lay eggs is possibly linked to changes in PM permeability affecting nutrient absorption.


Subject(s)
Animals , Female , Male , Chitinases/immunology , Immune Sera , Immunologic Factors/pharmacology , Insect Proteins/drug effects , Insect Vectors/drug effects , Phlebotomus/drug effects , Chitinases , DNA, Complementary , Digestion/drug effects , Feeding Behavior , Gastrointestinal Absorption/drug effects , Hemoglobins , Immune Sera/immunology , Insect Proteins , Insect Vectors/physiology , Mice, Inbred BALB C , Mosquito Control/methods , Oviposition/drug effects , Plasmids , Phlebotomus/physiology
3.
Mem Inst Oswaldo Cruz ; 109(8): 1064-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25591111

ABSTRACT

In sandflies, the absence of the peritrophic matrix (PM) affects the rate of blood digestion. Also, the kinetics of PM secretion varies according to species. We previously characterised PpChit1, a midgut-specific chitinase secreted in Phlebotomus papatasi (PPIS) that is involved in the maturation of the PM and showed that antibodies against PpChit1 reduce the chitinolytic activity in the midgut of several sandfly species. Here, sandflies were fed on red blood cells reconstituted with naïve or anti-PpChit1 sera and assessed for fitness parameters that included blood digestion, oviposition onset, number of eggs laid, egg bouts, average number of eggs per bout and survival. In PPIS, anti-PpChit1 led to a one-day delay in the onset of egg laying, with flies surviving three days longer compared to the control group. Anti-PpChit1 also had a negative effect on overall ability of flies to lay eggs, as several gravid females from all three species were unable to lay any eggs despite having lived longer than control flies. Whereas the longer survival might be associated with improved haeme scavenging ability by the PM, the inability of females to lay eggs is possibly linked to changes in PM permeability affecting nutrient absorption.


Subject(s)
Chitinases/immunology , Immune Sera , Immunologic Factors/pharmacology , Insect Proteins/drug effects , Insect Vectors/drug effects , Phlebotomus/drug effects , Animals , Chitinases/metabolism , DNA, Complementary , Digestion/drug effects , Feeding Behavior , Female , Gastrointestinal Absorption/drug effects , Hemoglobins/metabolism , Immune Sera/immunology , Insect Proteins/metabolism , Insect Vectors/physiology , Male , Mice, Inbred BALB C , Mosquito Control/methods , Oviposition/drug effects , Phlebotomus/physiology , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL
...