Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Internet Interv ; 31: 100606, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36844795

ABSTRACT

Background: Different curative treatment modalities need to be considered in case of localized prostate cancer, all comparable in terms of survival and recurrence though different in side effects. To better inform patients and support shared decision making, the development of a web-based patient decision aid including personalized risk information was proposed. This paper reports on requirements in terms of content of information, visualization of risk profiles, and use in practice. Methods: Based on a Dutch 10-step guide about the setup of a decision aid next to a practice guideline, an iterative and co-creative design process was followed. In collaboration with various groups of experts (health professionals, usability and linguistic experts, patients and the general public), research and development activities were continuously alternated. Results: Content requirements focused on presenting information only about conventional treatments and main side effects; based on risk group; and including clear explanations about personalized risks. Visual requirements involved presenting general and personalized risks separately; through bar charts or icon arrays; and along with numbers or words, and legends. Organizational requirements included integration into local clinical pathways; agreement about information input and output; and focus on patients' numeracy and graph literacy skills. Conclusions: The iterative and co-creative development process was challenging, though extremely valuable. The translation of requirements resulted in a decision aid about four conventional treatment options, including general or personalized risks for erection, urinary and intestinal problems that are communicated with icon arrays and numbers. Future implementation and validation studies need to inform about use and value in practice.

2.
Technol Cancer Res Treat ; 15(4): 632-8, 2016 08.
Article in English | MEDLINE | ID: mdl-26048909

ABSTRACT

Intramodality ultrasound image-guided radiotherapy systems compare daily ultrasound to reference ultrasound images. Nevertheless, because the actual treatment planning is based on a reference computed tomography image, and not on a reference ultrasound image, their accuracy depends partially on the correct intermodality registration of the reference ultrasound and computed tomography images for treatment planning. The error propagation in daily patient positioning due to potential registration errors at the planning stage was assessed in this work. Five different scenarios were simulated involving shifts or rotations of ultrasound or computed tomography images. The consequences of several workflow procedures were tested with a phantom setup. As long as the reference ultrasound and computed tomography images are made to match, the patient will be in the correct treatment position. In an example with a phantom measurement, the accuracy of the performed manual fusion was found to be ≤2 mm. In clinical practice, manual registration of patient images is expected to be more difficult. Uncorrected mismatches will lead to a systematically incorrect final patient position because there will be no indication that there was a misregistration between the computed tomography and reference ultrasound images. In the treatment room, the fusion with the computed tomography image will not be visible and based on the ultrasound images the patient position seems correct.


Subject(s)
Imaging, Three-Dimensional , Radiotherapy, Image-Guided , Ultrasonography , Humans , Patient Positioning , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided/instrumentation , Radiotherapy, Image-Guided/methods , Radiotherapy, Image-Guided/standards , Tomography, X-Ray Computed , Ultrasonography/methods , Workflow
3.
Int J Radiat Oncol Biol Phys ; 75(4): 1266-72, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19665317

ABSTRACT

PURPOSE: To develop a technique to monitor the dose rate in the urethra during permanent implant brachytherapy using a linear MOSFET array, with sufficient accuracy and without significantly extending the implantation time. METHODS AND MATERIALS: Phantom measurements were performed to determine the optimal conditions for clinical measurements. In vivo measurements were performed in 5 patients during the (125)I brachytherapy implant procedure. To evaluate if the urethra dose obtained in the operating room with the ultrasound transducer in the rectum and the patient in treatment position is a reference for the total accumulated dose; additional measurements were performed after the implantation procedure, in the recovery room. RESULTS: In vivo measurements during and after the implantation procedure agree very well, illustrating that the ultrasound transducer in the rectum and patient positioning do not influence the measured dose in the urethra. In vivo dose values obtained during the implantation are therefore representative for the total accumulated dose in the urethra. In 5 patients, the dose rates during and after the implantation were below the maximum dose rate of the urethra, using the planned seed distribution. CONCLUSION: In vivo dosimetry during the implantation, using a MOSFET array, is a feasible technique to evaluate the dose in the urethra during the implantation of (125)I seeds for prostate brachytherapy.


Subject(s)
Brachytherapy/methods , Iodine Radioisotopes/therapeutic use , Prostatic Neoplasms/radiotherapy , Urethra/radiation effects , Calibration , Equipment Design , Feasibility Studies , Humans , Male , Maximum Tolerated Dose , Phantoms, Imaging , Radiometry/instrumentation , Radiometry/methods , Rectum
4.
Int J Radiat Oncol Biol Phys ; 73(1): 314-21, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19100925

ABSTRACT

PURPOSE: In vivo dosimetry during brachytherapy of the prostate with (125)I seeds is challenging because of the high dose gradients and low photon energies involved. We present the results of a study using metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to evaluate the dose in the urethra after a permanent prostate implantation procedure. METHODS AND MATERIALS: Phantom measurements were made to validate the measurement technique, determine the measurement accuracy, and define action levels for clinical measurements. Patient measurements were performed with a MOSFET array in the urinary catheter immediately after the implantation procedure. A CT scan was performed, and dose values, calculated by the treatment planning system, were compared to in vivo dose values measured with MOSFET dosimeters. RESULTS: Corrections for temperature dependence of the MOSFET array response and photon attenuation in the catheter on the in vivo dose values are necessary. The overall uncertainty in the measurement procedure, determined in a simulation experiment, is 8.0% (1 SD). In vivo dose values were obtained for 17 patients. In the high-dose region (> 100 Gy), calculated and measured dose values agreed within 1.7% +/- 10.7% (1 SD). In the low-dose region outside the prostate (< 100 Gy), larger deviations occurred. CONCLUSIONS: MOSFET detectors are suitable for in vivo dosimetry during (125)I brachytherapy of prostate cancer. An action level of +/- 16% (2 SD) for detection of errors in the implantation procedure is achievable after validation of the detector system and measurement conditions.


Subject(s)
Brachytherapy/methods , Iodine Radioisotopes/analysis , Iodine Radioisotopes/therapeutic use , Radiometry/instrumentation , Radiometry/methods , Relative Biological Effectiveness , Urethra , Humans , Male , Organ Specificity , Radiotherapy Dosage , Scattering, Radiation , Semiconductors
5.
Int J Radiat Oncol Biol Phys ; 69(4): 1297-304, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17881143

ABSTRACT

PURPOSE: To predict the three-dimensional dose distribution of our total body irradiation technique, using a commercial treatment planning system (TPS). In vivo dosimetry, using metal oxide field effect transistors (MOSFETs) and thermoluminescence detectors (TLDs), was used to verify the calculated dose distributions. METHODS AND MATERIALS: A total body computed tomography scan was performed and loaded into our TPS, and a three-dimensional-dose distribution was generated. In vivo dosimetry was performed at five locations on the patient. Entrance and exit dose values were converted to midline doses using conversion factors, previously determined with phantom measurements. The TPS-predicted dose values were compared with the MOSFET and TLD in vivo dose values. RESULTS: The MOSFET and TLD dose values agreed within 3.0% and the MOSFET and TPS data within 0.5%. The convolution algorithm of the TPS, which is routinely applied in the clinic, overestimated the dose in the lung region. Using a superposition algorithm reduced the calculated lung dose by approximately 3%. The dose inhomogeneity, as predicted by the TPS, can be reduced using a simple intensity-modulated radiotherapy technique. CONCLUSIONS: The use of a TPS to calculate the dose distributions in individual patients during total body irradiation is strongly recommended. Using a TPS gives good insight of the over- and underdosage in a patient and the influence of patient positioning on dose homogeneity. MOSFETs are suitable for in vivo dosimetry purposes during total body irradiation, when using appropriate conversion factors. The MOSFET, TLD, and TPS results agreed within acceptable margins.


Subject(s)
Imaging, Three-Dimensional/methods , Radiotherapy Planning, Computer-Assisted/methods , Thermoluminescent Dosimetry/instrumentation , Tomography, X-Ray Computed/methods , Whole-Body Irradiation/methods , Algorithms , Humans , Oxides , Phantoms, Imaging , Radiometry/instrumentation , Radiotherapy Dosage , Thermoluminescent Dosimetry/methods , Transistors, Electronic
6.
Radiother Oncol ; 80(3): 288-95, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16916563

ABSTRACT

BACKGROUND AND PURPOSE: To determine the factors converting the reading of a MOSFET detector placed on the patient's skin without additional build-up to the dose at the depth of dose maximum (D(max)) and investigate their feasibility for in vivo dose measurements in electron beams. MATERIALS AND METHODS: Factors were determined to relate the reading of a MOSFET detector to D(max) for 4 - 15 MeV electron beams in reference conditions. The influence of variation in field size, SSD, angle and field shape on the MOSFET reading, obtained without additional build-up, was evaluated using 4, 8 and 15 MeV beams and compared to ionisation chamber data at the depth of dose maximum (z(max)). Patient entrance in vivo measurements included 40 patients, mostly treated for breast tumours. The MOSFET reading, converted to D(max), was compared to the dose prescribed at this depth. RESULTS: The factors to convert MOSFET reading to D(max) vary between 1.33 and 1.20 for the 4 and 15 MeV beams, respectively. The SSD correction factor is approximately 8% for a change in SSD from 95 to 100 cm, and 2% for each 5-cm increment above 100 cm SSD. A correction for fields having sides smaller than 6 cm and for irregular field shape is also recommended. For fields up to 20 x 20 cm(2) and for oblique incidence up to 45 degrees, a correction is not necessary. Patient measurements demonstrated deviations from the prescribed dose with a mean difference of -0.7% and a standard deviation of 2.9%. CONCLUSION: Performing dose measurements with MOSFET detectors placed on the patient's skin without additional build-up is a well suited technique for routine dose verification in electron beams, when applying the appropriate conversion and correction factors.


Subject(s)
Breast Neoplasms/radiotherapy , Electrons/therapeutic use , Quality Assurance, Health Care , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/instrumentation , Skin/radiation effects , Calibration , Feasibility Studies , Humans , Radiometry/standards , Radiotherapy Dosage , Semiconductors , Sensitivity and Specificity , Transistors, Electronic
SELECTION OF CITATIONS
SEARCH DETAIL
...