Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Nutr Food Res ; 66(8): e2100514, 2022 04.
Article in English | MEDLINE | ID: mdl-35175665

ABSTRACT

SCOPE: Perinatal maternal obesity and excessive fructose consumption have been associated with liver metabolic diseases. The study investigates whether moderate maternal high-fat diet affects the liver mitochondria responses to fructose intake in adult offspring. METHODS AND RESULTS: Wistar female rats have received a standard diet (mSTD) or high-fat diet (mHFD) (9% and 28.6% fat, respectively), before mating until the end of lactation. Male offspring were fed standard diet from weaning to adulthood and received water or fructose-drinking water (15%) from 120 to 150 days old. Fructose induces liver mitochondrial ultrastructural alterations with higher intensity in mHFD offspring, accompanied by reduced autophagy markers. Isolated mitochondria respirometry shows unaltered ATP-coupled oxygen consumption with increased Atp5f1b mRNA only in mHFD offspring. Fructose increases basal respiration and encoding complex I-III mRNA, only in mSTD offspring. Uncoupled respiration is lower in mHFD mitochondria that are unable to exhibit fructose-induced increase Ucp2 mRNA. Fructose decreases antioxidative defense markers, increases unfolded protein response and insulin resistance only in mHFD offspring without fructose-induced hepatic lipid accumulation. CONCLUSION: Mitochondrial dysfunction and homeostatic disturbances in response to fructose are early events evidencing the higher risk of fructose damage in the liver of adult offspring from dams fed an isocaloric moderate high-fat diet.


Subject(s)
Diet, High-Fat , Prenatal Exposure Delayed Effects , Adult , Adult Children , Animals , Diet, High-Fat/adverse effects , Female , Fructose/adverse effects , Humans , Male , Maternal Nutritional Physiological Phenomena , Mitochondria, Liver/metabolism , Pregnancy , RNA, Messenger , Rats , Rats, Wistar
2.
Nutrients ; 13(8)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34444747

ABSTRACT

Assisted reproductive technologies (ART) may increase risk for abnormal placental development, preterm delivery and low birthweight. We investigated placental morphology, transporter expression and paired maternal/umbilical fasting blood nutrient levels in human term pregnancies conceived naturally (n = 10) or by intracytoplasmic sperm injection (ICSI; n = 11). Maternal and umbilical vein blood from singleton term (>37 weeks) C-section pregnancies were assessed for levels of free amino acids, glucose, free fatty acids (FFA), cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), very low-density lipoprotein (VLDL) and triglycerides. We quantified placental expression of GLUT1 (glucose), SNAT2 (amino acids), P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) (drug) transporters, and placental morphology and pathology. Following ICSI, placental SNAT2 protein expression was downregulated and umbilical cord blood levels of citrulline were increased, while FFA levels were decreased at term (p < 0.05). Placental proliferation and apoptotic rates were increased in ICSI placentae (p < 0.05). No changes in maternal blood nutrient levels, placental GLUT1, P-gp and BCRP expression, or placental histopathology were observed. In term pregnancies, ICSI impairs placental SNAT2 transporter expression and cell turnover, and alters umbilical vein levels of specific nutrients without changing placental morphology. These may represent mechanisms through which ICSI impacts pregnancy outcomes and programs disease risk trajectories in offspring across the life course.


Subject(s)
Fertilization , Fetal Blood/metabolism , Nutrients , Placenta/metabolism , Pregnancy Trimester, Third , Sperm Injections, Intracytoplasmic/adverse effects , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Adult , Amino Acid Transport System A/metabolism , Apoptosis , Cell Proliferation , Female , Glucose Transporter Type 1/metabolism , Humans , Neoplasm Proteins/metabolism , Placenta/pathology , Pregnancy , Pregnancy Outcome , Premature Birth/etiology , Reproductive Techniques, Assisted/adverse effects , Sperm Injections, Intracytoplasmic/methods
3.
J Appl Physiol (1985) ; 129(5): 1062-1074, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32909923

ABSTRACT

Obesity is associated with bioenergetic dysfunction of peripheral muscles; however, little is known regarding the impact of obesity on the diaphragm. We hypothesized that obesity would be associated with diaphragm dysfunction attributable to mitochondrial oxygen consumption and structural and ultrastructural changes. Wistar rat litters were culled to 3 pups to induce early postnatal overfeeding and consequent obesity. Control animals were obtained from unculled litters. From postnatal day 150, diaphragm ultrasound, computed tomography, high-resolution respirometry, immunohistochemical, biomolecular, and ultrastructural histological analyses were performed. The diaphragms of obese animals, compared with those of controls, presented changes in morphology as increased thickening fraction, diaphragm excursion, and diaphragm dome height, as well as increased mitochondrial respiratory capacity coupled to ATP synthesis and maximal respiratory capacity. Fatty acid synthase gene expression was also higher in obese animals, suggesting a source of energy for the respiratory chain. Myosin heavy chain-IIA was increased, indicating shift from glycolytic toward oxidative muscle fiber profile. Diaphragm tissue also exhibited ultrastructural changes, such as compact, round, and swollen mitochondria with fainter cristae and more lysosomal bodies. Dynamin-1 expression in the diaphragm was reduced in obese rats, suggesting decreased mitochondrial fission. Furthermore, gene expressions of peroxisome γ proliferator-activated receptor coactivator-1α and superoxide dismutase-2 were lower in obese animals than in controls, which may indicate a predisposition to oxidative injury. In conclusion, in the obesity model used herein, muscle fiber phenotype was altered in a manner likely associated with increased mitochondrial respiratory capability, suggesting respiratory adaptation to increased metabolic demand.NEW & NOTEWORTHY Obesity has been associated with peripheral muscle dysfunction; however, little is known about its impact on the diaphragm. In the current study, we found high oxygen consumption in diaphragm tissue and changes in muscle fiber phenotypes toward a more oxidative profile in experimental obesity.


Subject(s)
Diaphragm , Obesity , Animals , Diaphragm/metabolism , Energy Metabolism , Muscle Fibers, Skeletal , Muscle, Skeletal/metabolism , Obesity/metabolism , Rats , Rats, Wistar
4.
J Cell Mol Med ; 24(18): 10636-10647, 2020 09.
Article in English | MEDLINE | ID: mdl-32779889

ABSTRACT

Malaria in pregnancy (MiP) induces intrauterine growth restriction (IUGR) and preterm labour (PTL). However, its effects on yolk sac morphology and function are largely unexplored. We hypothesized that MiP modifies yolk sac morphology and efflux transport potential by modulating ABC efflux transporters. C57BL/6 mice injected with Plasmodium berghei ANKA (5 × 105 infected erythrocytes) at gestational day (GD) 13.5 were subjected to yolk sac membrane harvesting at GD 18.5 for histology, qPCR and immunohistochemistry. MiP did not alter the volumetric proportion of the yolk sac's histological components. However, it increased levels of Abcb1a mRNA (encoding P-glycoprotein) and macrophage migration inhibitory factor (Mif chemokine), while decreasing Abcg1 (P < 0.05); without altering Abca1, Abcb1b, Abcg2, Snat1, Snat2, interleukin (Il)-1ß and C-C Motif chemokine ligand 2 (Ccl2). Transcripts of Il-6, chemokine (C-X-C motif) ligand 1 (Cxcl1), Glut1 and Snat4 were not detectible. ABCA1, ABCG1, breast cancer resistance protein (BCRP) and P-gp were primarily immunolocalized to the cell membranes and cytoplasm of endodermic epithelium but also in the mesothelium and in the endothelium of mesodermic blood vessels. Intensity of P-gp labelling was stronger in both endodermic epithelium and mesothelium, whereas ABCA1 labelling increased in the endothelium of the mesodermic blood vessels. The presence of ABC transporters in the yolk sac wall suggests that this fetal membrane acts as an important protective gestational barrier. Changes in ABCA1 and P-gp in MiP may alter the biodistribution of toxic substances, xenobiotics, nutrients and immunological factors within the fetal compartment and participate in the pathogenesis of malaria-induced IUGR and PTL.


Subject(s)
ATP Binding Cassette Transporter 1/biosynthesis , ATP Binding Cassette Transporter, Subfamily B/biosynthesis , Gene Expression Regulation , Malaria/metabolism , Pregnancy Complications, Infectious/metabolism , Yolk Sac/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Biological Transport , Cytokines/biosynthesis , Cytokines/genetics , Female , Fetal Growth Retardation/etiology , Inflammation , Malaria/complications , Malaria/genetics , Membrane Transport Proteins/biosynthesis , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Organ Size , Plasmodium berghei , Pregnancy , Pregnancy Complications, Infectious/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Yolk Sac/ultrastructure
5.
Front Physiol ; 9: 560, 2018.
Article in English | MEDLINE | ID: mdl-29910736

ABSTRACT

Skeletal muscle maintains posture and enables movement by converting chemical energy into mechanical energy, further contributing to basal energy metabolism. Thyroid hormones (thyroxine, or T4, and triiodothyronine, or T3) participate in contractile function, metabolic processes, myogenesis and regeneration of skeletal muscle. T3 classically modulates gene expression after binding to thyroid hormone nuclear receptors. Thyroid hormone effects depend on nuclear receptor occupancy, which is directly related to intracellular T3 levels. Sarcolemmal thyroid hormone levels are regulated by their transport across the plasma membrane by specific transporters, as well as by the action of deiodinases types 2 and 3, which can activate or inactivate T4 and T3. Thyroid hormone level oscillations have been associated with the worsening of many myopathies such as myasthenia gravis, Duchenne muscular dystrophy (DMD) and rhabdomyolysis. During aging skeletal muscle show a decrease in mass and quality, known as sarcopenia. There is increasing evidence that thyroid hormones could have a role in the sarcopenic process. Therefore, in this review, we aim to discuss the main effects of thyroid hormones in skeletal muscular aging processes and myopathy-related pathologies.

6.
J Endocrinol ; 236(1): R57-R68, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29051191

ABSTRACT

Thyroid hormones (TH) are crucial for development, growth, differentiation, metabolism and thermogenesis. Skeletal muscle (SM) contractile function, myogenesis and bioenergetic metabolism are influenced by TH. These effects depend on the presence of the TH transporters MCT8 and MCT10 in the plasma membrane, the expression of TH receptors (THRA or THRB) and hormone availability, which is determined either by the activation of thyroxine (T4) into triiodothyronine (T3) by type 2 iodothyronine deiodinases (D2) or by the inactivation of T4 into reverse T3 by deiodinases type 3 (D3). SM relaxation and contraction rates depend on T3 regulation of myosin expression and energy supplied by substrate oxidation in the mitochondria. The balance between D2 and D3 expression determines TH intracellular levels and thus influences the proliferation and differentiation of satellite cells, indicating an important role of TH in muscle repair and myogenesis. During critical illness, changes in TH levels and in THR and deiodinase expression negatively affect SM function and repair. This review will discuss the influence of TH action on SM contraction, bioenergetics metabolism, myogenesis and repair in health and illness conditions.


Subject(s)
Muscle, Skeletal/metabolism , Thyroid Hormones/metabolism , Animals , Critical Illness , Euthyroid Sick Syndromes/metabolism , Humans , Muscle Development
8.
Front Physiol ; 8: 828, 2017.
Article in English | MEDLINE | ID: mdl-29118715

ABSTRACT

Fasting and sepsis induce profound changes in thyroid hormone (TH) central and peripheral metabolism. These changes affect TH action and are called the non-thyroidal illness syndrome (NTIS). To date, it is still debated whether NTIS represents an adaptive response or a real hypothyroid state at the tissue level. Moreover, even though it has been considered the same syndrome, we hypothesized that fasting and sepsis induce a distinct set of changes in thyroid hormone metabolism. Herein, we aimed to evaluate the central and peripheral expression of genes involved in the transport (MCT8/Slc16a2 and MCT10/Slc16a10), metabolism (Dio1, Dio2, and Dio3) and action (Thra and Thrb) of TH during NTIS induced by fasting or sepsis. Male mice were subjected to a 48 h period of fasting or cecal ligation and puncture (CLP)-induced sepsis. At the peripheral level, fasting led to: (1) reduced serum thyroxine (T4) and triiodothyronine (T3), expression of Dio1, Thra, Slc16a2, and MCT8 protein in liver; (2) increased hepatic Slc16a10 and Dio3 expression; and (3) decreased Slc16a2 and Slc16a10 expressions in the thyroid gland. Fasting resulted in reduction of Tshb expression in the pituitary and increased expression of Dio2 in total hypothalamus, arcuate (ARC) and paraventricular (PVN) nucleus. CLP induced sepsis resulted in reduced: (1) T4 serum levels; (2) Dio1, Slc16a2, Slc16a10, Thra, and Thrb expression in liver as well as Slc16a2 expression in the thyroid gland (3) Thrb and Tshb mRNA expression in the pituitary; (4) total leukocyte counts in the bone marrow while increased its number in peritoneal and pleural fluids. In summary, fasting- or sepsis-driven NTIS promotes changes in the set point of hypothalamus-pituitary-thyroid axis through different mechanisms. Reduced hepatic THRs expression in conjunction with reduced TH transporters expression in the thyroid gland may indicate, respectively, reduction in the peripheral action and in the secretion of TH, which may contribute to the low TH serum levels observed in both models.

9.
Endocrinology ; 157(8): 3293-305, 2016 08.
Article in English | MEDLINE | ID: mdl-27355490

ABSTRACT

Neutrophils are important effector cells of the innate immune system. Thyroid hormone (TH) is thought to play an important role in their function. Intracellular TH levels are regulated by the deiodinating enzymes. The TH-inactivating type 3 deiodinase (D3) is expressed in infiltrating murine neutrophils, and D3 knockout mice show impaired bacterial killing upon infection. This suggests that D3 plays an important role in the bacterial killing capacity of neutrophils. The mechanism behind this effect is unknown. We aimed to assess the presence of D3 in human neutrophils, and determine its subcellular localization using confocal and electron microscopy, because this could give important clues about its function in these cells. D3 appeared to be present in the cytoplasm and in myeloperoxidase containing azurophilic granules and as well as lactoferrin containing specific granules within human neutrophils. This subcellular localization did not change upon activation of the cells. D3 is observed intracellularly during neutrophil extracellular trap formation, followed by a reduction of D3 staining after release of the neutrophil extracellular traps into the extracellular space. At the transcriptional level, human neutrophils expressed additional essential elements of TH metabolism, including TH transporters and TH receptors. Here, we demonstrate the presence and subcellular location of D3 in human neutrophils for the first time and propose a model, in which D3 plays a role in the bacterial killing capacity of neutrophils either through generation of iodide for the myeloperoxidase system or through modulation of intracellular TH bioavailability.


Subject(s)
Anti-Bacterial Agents/metabolism , Cytoplasm/metabolism , Cytoplasmic Granules/metabolism , Iodide Peroxidase/metabolism , Neutrophils/metabolism , Cells, Cultured , Endosomes/metabolism , Extracellular Traps/metabolism , Female , Humans , Male , Neutrophils/cytology , Thyroid Hormones/metabolism , Tissue Distribution
10.
Thyroid ; 26(4): 600-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26892873

ABSTRACT

BACKGROUND: The diaphragm is the main respiratory muscle, and its function is compromised during severe illness. Altered local thyroid hormone (TH) metabolism may be a determinant of impaired muscle function during illness. METHODS: This study investigates the effects of bacterial sepsis and chronic inflammation on muscle fiber type, local TH metabolism, and mitochondrial function in the diaphragm. Two mouse models were used: sepsis induced by S. pneumoniae infection or chronic inflammation induced by subcutaneous turpentine injection. In vitro, the effect of bacterial endotoxin (LPS) on mitochondrial function in C2C12 myotubes was studied. RESULTS: Sepsis induced a transient increase in the fiber type I profile and increased Dio3 expression while decreasing Dio2, Thra1, and Slc16a2 expression. Triiodothyronine positively regulated genes Tnni2 and Myog were decreased, indicating reduced TH signaling in the diaphragm. In contrast, chronic inflammation increased the fiber type II profile in the diaphragm as well as Thra1, Thrb1, and Myog expression while decreasing Dio3 expression, suggesting increased TH responsiveness during chronic inflammation. LPS-stimulated C2C12 myotubes showed decreased Dio2 expression and reduced basal oxygen consumption as well as non-mitochondrial respiration. The same respiratory profile was induced by Dio2 knockdown in myotubes. CONCLUSIONS: The in vivo results show differential effects of sepsis and chronic inflammation on diaphragm muscle fiber type, TH metabolism, and mitochondrial function, while the in vitro results point to a causal role for altered TH metabolism in functional muscle impairment. These findings may be relevant for the pathogenesis of impaired respiratory function in critical illness.


Subject(s)
Inflammation/metabolism , Mitochondria/metabolism , Muscles/metabolism , Sepsis/complications , Thyroid Hormones/metabolism , Animals , Female , Iodide Peroxidase/metabolism , Mediator Complex/metabolism , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Monocarboxylic Acid Transporters , Myogenin/metabolism , Pneumococcal Infections/metabolism , Respiratory Muscles/physiopathology , Sepsis/microbiology , Symporters , Time Factors , Troponin I/metabolism , Iodothyronine Deiodinase Type II
SELECTION OF CITATIONS
SEARCH DETAIL
...