Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosurgery ; 87(3): 602-610, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32421806

ABSTRACT

BACKGROUND: Deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) can improve seizure control for patients with drug-resistant epilepsy (DRE). Yet, one cannot overlook the high discrepancy in efficacy among patients, possibly resulting from differences in stimulation site. OBJECTIVE: To test the hypothesis that stimulation at the junction of the ANT and mammillothalamic tract (ANT-MTT junction) increases seizure control. METHODS: The relationship between seizure control and the location of the active contacts to the ANT-MTT junction was investigated in 20 patients treated with ANT-DBS for DRE. Coordinates and Euclidean distance of the active contacts relative to the ANT-MTT junction were calculated and related to seizure control. Stimulation sites were mapped by modelling the volume of tissue activation (VTA) and generating stimulation heat maps. RESULTS: After 1 yr of stimulation, patients had a median 46% reduction in total seizure frequency, 50% were responders, and 20% of patients were seizure-free. The Euclidean distance of the active contacts to the ANT-MTT junction correlates to change in seizure frequency (r2 = 0.24, P = .01) and is ∼30% smaller (P = .015) in responders than in non-responders. VTA models and stimulation heat maps indicate a hot-spot at the ANT-MTT junction for responders, whereas non-responders had no evident hot-spot. CONCLUSION: Stimulation at the ANT-MTT junction correlates to increased seizure control. Our findings suggest a relationship between the stimulation site and therapy response in ANT-DBS for epilepsy with a potential role for the MTT. DBS directed at white matter merits further exploration for the treatment of epilepsy.


Subject(s)
Deep Brain Stimulation/methods , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/therapy , Neural Pathways/physiopathology , Female , Humans , Male , Treatment Outcome , Ventral Tegmental Area/physiopathology , Young Adult
2.
Neuropsychologia ; 116(Pt A): 136-149, 2018 07 31.
Article in English | MEDLINE | ID: mdl-28572007

ABSTRACT

Touch is central to interpersonal interactions. Touch conveys specific emotions about the touch provider, but it is not clear whether this is a purely socially learned function or whether it has neurophysiological specificity. In two experiments with healthy participants (N = 76 and 61) and one neuropsychological single case study, we investigated whether a type of touch characterised by peripheral and central neurophysiological specificity, namely the C tactile (CT) system, can communicate specific emotions and mental states. We examined the specificity of emotions elicited by touch delivered at CT-optimal (3cm/s) and CT-suboptimal (18cm/s) velocities (Experiment 1) at different body sites which contain (forearm) vs. do not contain (palm of the hand) CT fibres (Experiment 2). Blindfolded participants were touched without any contextual cues, and were asked to identify the touch provider's emotion and intention. Overall, CT-optimal touch (slow, gentle touch on the forearm) was significantly more likely than other types of touch to convey arousal, lust or desire. Affiliative emotions such as love and related intentions such as social support were instead reliably elicited by gentle touch, irrespective of CT-optimality, suggesting that other top-down factors contribute to these aspects of tactile social communication. To explore the neural basis of this communication, we also tested this paradigm in a stroke patient with right perisylvian damage, including the posterior insular cortex, which is considered as the primary cortical target of CT afferents, but excluding temporal cortex involvement that has been linked to more affiliative aspects of CT-optimal touch. His performance suggested an impairment in 'reading' emotions based on CT-optimal touch. Taken together, our results suggest that the CT system can add specificity to emotional and social communication, particularly with regards to feelings of desire and arousal. On the basis of these findings, we speculate that its primary functional role may be to enhance the 'sensual salience' of tactile interactions.


Subject(s)
Communication , Emotions/physiology , Interpersonal Relations , Reading , Touch Perception/physiology , Touch/physiology , Adolescent , Adult , Aged , Analysis of Variance , Chi-Square Distribution , Female , Hand/innervation , Humans , Image Processing, Computer-Assisted , Intention , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Fibers, Unmyelinated/physiology , Physical Stimulation , Stroke/diagnostic imaging , Stroke/psychology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...