Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Des ; 20(30): 4911-9, 2014.
Article in English | MEDLINE | ID: mdl-24898245

ABSTRACT

A significant milestone in the treatment of breast cancer is the identification of the HER2 receptor as a drug target for cancer therapies. Trastuzumab (Herceptin), a monoclonal antibody that blocks the HER2 receptor, is among the first of such drugs approved by the US Food and Drug Administration for targeted cancer therapy. Clinical studies have shown that Trastuzumab significantly improves the overall survival of breast cancer patients. However, an unforeseen significant side-effect of cardiotoxicity manifested as left ventricular dysfunction and heart failure. Concurrent studies have demonstrated the essential role of the HER2 receptor in cardiac development and maintaining the physiological function of an adult heart. The HER2 receptor, therefore, has become a critical link between the oncology and cardiology fields. In addition to Trastuzumab, new drugs targeting the HER2 receptor, such as Lapatinib, Pertuzumab and Afatinib, are either approved or being evaluated in clinical trials for cancer therapy. With the concern of cardiotoxicity caused by HER2 inhibition, it becomes clear that new therapeutic strategies for preventing such cardiac side effects need to be developed. It is the intent of this paper to review the potential cardiac impact of anti-HER2 cancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Heart/drug effects , Receptor, ErbB-2/antagonists & inhibitors , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Humans
2.
Curr Pharm Des ; 20(30): 4906-10, 2014.
Article in English | MEDLINE | ID: mdl-24283951

ABSTRACT

Myocardial infarction, heart failure, and chronic ischemic heart disease account for the majority of the cardiovascular burden. The current treatment strategies focus on limiting the progression of disease and preserving cardiac myocardium. The goal of stem cell therapy, on the other hand, is to reverse or replace damaged cardiac tissue. Over the past two decades many studies have been conducted to understand stem cell performance, survival, and the potential for cardiac repair. Neuregulin1, an epidermal growth factor family member, promotes embryonic stem cell differentiation into the cardiac lineage and improves survival in bone marrow-derived mesenchymal stem cell and embryonic endothelial progenitor cells. Current clinical trials are actively pursuing Neuregulin1's therapeutic potential in the areas of heart failure and cardiac ischemia. It is the intent of this paper to review the current knowledge of Neuregulin1 in stem cell biology and discuss the potential of using Neuregulin1 to improve stem cell therapy for cardiac repair.


Subject(s)
Heart/physiopathology , Neuregulin-1/physiology , Regeneration , Stem Cell Transplantation , Cell Lineage , Cell Survival , Embryonic Stem Cells/cytology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...