Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Kidney J ; 14(11): 2365-2370, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34754431

ABSTRACT

BACKGROUND: Frequent outbreaks around the globe and endemic appearance in different parts of the world emphasize the substantial risk of hantavirus diseases. Increasing incidence rates, trends of changing distribution of hantavirus species and new insights into clinical courses of hantavirus diseases call for multinational surveillance. Furthermore, evidence-based guidelines for the management of hantavirus diseases and scoring systems, which allow stratification of patients into risk categories, are lacking. METHODS: Hantavirus registry (HantaReg) is a novel registry platform facilitating multinational research of hantavirus-caused diseases, such as haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). HantaReg provides an electronic case report form and uses the General Data Protection Regulation compliant platform clinicalsurveys.net, which can be accessed from any internet browser in the world. Having a modular structure, the registry platform is designed to display or hide questions and items according to the documented case (e.g. patient with HFRS versus HCPS) to facilitate fast, but standardized, data entry. Information categories documented in HantaReg are demographics, pre-existing diseases, clinical presentation, diagnostic and therapeutic approaches, as well as outcome. CONCLUSIONS: HantaReg is a novel, ready-to-use platform for clinical and epidemiological studies on hantavirus diseases and facilitates the documentation of the disease course associated with hantavirus infections. HantaReg is expected to promote international collaboration and contributes to improving patient care through the analysis of diagnostic and treatment pathways for hantavirus diseases, providing evidence for robust treatment recommendations. Moreover, HantaReg enables the development of prognosis-indicating scoring systems for patients with hantavirus disease.

2.
Cell Physiol Biochem ; 52(5): 1139-1150, 2019.
Article in English | MEDLINE | ID: mdl-30990584

ABSTRACT

BACKGROUND/AIMS: Fabry disease (FD) is a lysosomal storage disorder characterized by impaired alpha-galactosidase A (α-Gal A) enzyme activity due to mutations in the GLA gene. While virtually all tissues are affected, renal damage is particularly critical for the patients' outcome. Currently, powerful diagnostic tools and in vivo research models to study FD in the kidney are lacking, which is a major obstacle for further improvements in diagnosis and therapy. The present study focuses on the effects of enzyme replacement therapy on a previously established podocyte cell culture model of Fabry disease. METHODS: We investigated the effect of in vitro application of α-Gal A on Fabry podocytes for 3 days, mimicking enzyme replacement therapy. We studied reduction of Gb3 levels and dysregulated molecular pathways such as autophagy, mTOR/AKT signaling and pro-fibrotic signaling by employing immunofluorescence, electron microscopy, tandem mass spectrometry and western blot. RESULTS: We detected complete resolution of Gb3 accumulation in Fabry podocytes upon α-Gal A treatment. Despite robust Gb3 clearance, dysregulation of the signaling pathways investigated was not reversed. CONCLUSION: This study presents first evidence for Gb3-independent effects regarding dysregulation of signal transduction mechanisms in FD not recovering upon α-Gal A treatment. We assume that intracellular alterations observed in FD may have a point of no return after which a reversal of dysregulated cellular signal transduction by α-Gal A treatment is not effective, despite Gb3 clearance. Our observations suggest further research on signal transduction mechanisms altered in Fabry podocytes and on determining the appropriate time for initiation of Fabry therapy.


Subject(s)
Enzyme Replacement Therapy , Fabry Disease , Models, Biological , Podocytes/metabolism , Signal Transduction/drug effects , Trihexosylceramides/metabolism , alpha-Galactosidase/therapeutic use , Cell Culture Techniques , Cell Line, Transformed , Fabry Disease/drug therapy , Fabry Disease/metabolism , Fabry Disease/pathology , Humans , Podocytes/pathology
3.
Sci Rep ; 8(1): 11042, 2018 07 23.
Article in English | MEDLINE | ID: mdl-30038331

ABSTRACT

Fabry disease is a lysosomal storage disorder resulting from impaired alpha-galactosidase A (α-Gal A) enzyme activity due to mutations in the GLA gene. Currently, powerful diagnostic tools and in vivo research models to study Fabry disease are missing, which is a major obstacle for further improvements in diagnosis and therapy. Here, we explore the utility of urine-derived primary cells of Fabry disease patients. Viable cells were isolated and cultured from fresh urine void. The obtained cell culture, modeling the renal epithelium, is characterized by patient-specific information. We demonstrate that this non-invasive source of patient cells provides an adequate cellular in vivo model as cells exhibit decreased α-Gal A enzyme activity and concomitant globotriaosylceramide accumulation. Subsequent quantitative proteomic analyses revealed dysregulation of endosomal and lysosomal proteins indicating an involvement of the Coordinated Lysosomal Expression and Regulation (CLEAR) network in the disease pathology. This proteomic pattern resembled data from our previously described human podocyte model of Fabry disease. Taken together, the employment of urine-derived primary cells of Fabry disease patients might have diagnostic and prognostic implications in the future. Our findings pave the way towards a more detailed understanding of pathophysiological mechanisms and may allow the development of future tailored therapeutic strategies.


Subject(s)
Fabry Disease/diagnosis , Fabry Disease/urine , Urine/cytology , Adult , Aged , Fabry Disease/metabolism , Female , Humans , Male , Middle Aged , Proteomics/methods , Trihexosylceramides/metabolism , alpha-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...