Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38254449

ABSTRACT

This experiment aimed to evaluate commercially available disinfectants and their application methods against porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) on truck cab surfaces. Plastic, fabric, and rubber surfaces inoculated with PEDV or PRRSV were placed in a full-scale truck cab and then treated with one of eight randomly assigned disinfectant treatments. After application, surfaces were environmentally sampled with cotton gauze and tested for PEDV and PRRSV using qPCR duplex analysis. There was a disinfectant × surface interaction (p < 0.0001), indicating a detectable amount of PEDV or PRRSV RNA was impacted by disinfectant treatment and surface material. For rubber surfaces, 10% bleach application had lower detectable amounts of RNA compared to all other treatments (p < 0.05) except Intervention via misting fumigation, which was intermediate. In both fabric and plastic surfaces, there was no evidence (p > 0.05) of a difference in detectable RNA between disinfectant treatments. For disinfectant treatments, fabric surfaces with no chemical treatment had less detectable viral RNA compared to the corresponding plastic and rubber (p < 0.05). Intervention applied via pump sprayer to fabric surfaces had less detectable viral RNA than plastic (p < 0.05). Furthermore, 10% bleach applied via pump sprayer to fabric and rubber surfaces had less detectable viral RNA than plastic (p < 0.05). Also, a 10 h downtime, with no chemical application or gaseous fumigation for 10 h, applied to fabric surfaces had less detectable viral RNA than other surfaces (p < 0.05). Sixteen treatments were evaluated via swine bioassay, but all samples failed to produce infectivity. In summary, commercially available disinfectants successfully reduced detectable viral RNA on surfaces but did not eliminate viral genetic material, highlighting the importance of bioexclusion of pathogens of interest.

2.
J Vet Diagn Invest ; 35(5): 464-469, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37431822

ABSTRACT

We used virus isolation (VI) to determine tissue culture infectivity and reverse-transcription quantitative PCR (RT-qPCR) to determine the stability of porcine reproductive and respiratory syndrome virus 2 (PRRSV) strain P129 in solvent-extracted soybean meal (SBM), dried distillers grains with solubles (DDGS), complete swine feed (FEED), or medium (DMEM) at 4°C, 23°C, or 37°C for up to 3 d. Samples of each treatment were taken at regular intervals and processed. Supernatant was titrated and used to inoculate confluent MARC-145 cells to determine infectivity. RNA was extracted from each supernatant sample and tested by RT-qPCR to determine any change in detectable virus RNA across matrix type, temperature, and time. An interaction (p = 0.028) was observed for matrix × temperature × hour for live virus detected by VI. At 4°C, the concentration of infectious virus was greatest in DMEM, intermediate in SBM, and lowest in DDGS and FEED. DMEM also had the greatest concentration of infectious PRRSV at 23°C over time; a higher infectious virus concentration was maintained in SBM for longer than in DDGS or FEED. At 37°C, a greater concentration of infectious virus was sustained in DMEM than in the feedstuffs, with concentrations decreasing until 48 h post-inoculation. Only matrix type influenced the quantity of viral RNA detected by RT-qPCR (p = 0.032). More viral RNA was detected in the virus control than in DDGS; SBM and FEED were intermediate. By VI, we found that infectious virus could be harbored in SBM, DDGS, and FEED for a short time.


Subject(s)
Porcine respiratory and reproductive syndrome virus , Swine , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Glycine max , Temperature , RNA, Viral/genetics , Animal Feed/analysis , Zea mays
3.
Transl Anim Sci ; 6(4): txac150, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36519006

ABSTRACT

Maintaining biosecurity between swine barns is challenging, and boot baths are an easily implementable option some utilize to limit pathogen spread. However, there are concerns regarding their efficacy, especially when comparing wet or dry disinfectants. The objective of this study was to evaluate the efficacy of boot baths in reducing the quantity of detectable porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) genetic material using wet or dry disinfectants. Treatments included 1) control, 2) dry chlorine powder (Traffic C.O.P., PSP, LLC, Rainsville, AL), and 3) wet quaternary ammonium/glutaraldehyde liquid (1:256 Synergize, Neogen, Lexington, KY). Prior to disinfection, rubber boots were inoculated with 1 mL of a co-inoculants of PRRSV (1 × 105 TCID50 per mL) and PEDV (1 × 105 TCID50 per mL) and dried for 15 min. After the drying period, a researcher placed the boot on the right foot and stepped directly on a stainless steel coupon (control). Alternatively, the researcher stepped first into a boot bath containing either the wet or dry sanitizer, stood for 3 s, and then stepped onto a steel coupon. After one minute, an environmental swab was then collected and processed from each boot and steel coupon. The procedure was replicated 12 times per disinfectant treatment. Samples were analyzed using a duplex qPCR at the Kansas State Veterinary Diagnostic Laboratory. Cycle threshold values were analyzed using SAS GLIMMIX v 9.4 (SAS, Inc., Cary, NC). There was no evidence of a disinfectant × surface × virus interaction (P > 0.10). An interaction between disinfectant × surface impacted (P < 0.05) the quantity of detectable viral RNA. As expected, the quantity of the viruses on the coupon was greatest in the control, indicating that a contaminated boot has the ability to transfer viruses from a contaminated surface to a clean surface. Comparatively, the dry disinfectant treatment resulted in no detectable viral RNA on either the boot or subsequent coupon. The wet disinfectant treatment had statistically similar (P > 0.05) viral contamination to the control on the boot, but less viral contamination compared to the control on the metal coupon. In this experiment, a boot bath with dry powder was the most efficacious in reducing the detectable viral RNA on both boots and subsequent surfaces.

4.
Transl Anim Sci ; 6(1): txac003, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35187411

ABSTRACT

This study aimed to estimate the net energy (NE) value of expelled, extruded soybean meal (MSBM) relative to dehulled, solvent-extracted soybean meal (SSBM) and determine its effects on growth performance of late nursery pigs. A total of 297 pigs (DNA 241 × 600) were weaned (BW 5.10 kg) and placed into 60 pens (2 rooms of 30 pens) with 5 pigs per pen balanced by gender and weaning weight. Pigs were fed a common diet for 21 d. Then, pens of pigs (BW 9.3 kg) were randomly assigned to one of five treatments to provide 12 replications per treatment. Treatments consisted of increasing amounts of MSBM replacing SSBM in the diet (0%, 25%, 50%, 75%, and 100%). All diets were fed for 28 d and were formulated to 1.30% standardized ileal digestible lysine and met or exceeded requirements for amino acids, calcium, and phosphorus. The SSBM diet was formulated to 2,421 kcal/kg and NE was not balanced between diets. Analyzed values for CP, EE, CF, and total lysine for the SSBM were 47.28%, 0.47%, 3.80%, and 3.00%, whereas the MSBM contained 47.41%, 6.88%, 5.32%, and 2.99%, respectively. The MSBM had increased values for KOH solubility and trypsin inhibitor (83.62% and 7,026 TIU/g) compared to the SSBM (73.05% and 3,011 TIU/g), whereas urease activity was similar between the two (0.03 and 0.02 Δ pH, respectively). Data were analyzed using Proc GLIMMIX (SAS 9.4; Cary, NC) with pen as the experimental unit and room as the blocking factor. There was no evidence of differences in ADG and ADFI in pigs fed diets with increasing concentrations of MSBM. Pigs fed diets with increasing concentrations of MSBM had improved (linear, P < 0.001) G:F and caloric efficiency on an NE basis. Using caloric efficiency to estimate NE of the MSBM relative to SSBM, MSBM was estimated to have a value of 2,566 kcal/kg. In conclusion, MSBM contains approximately 123% of the energy of SSBM, which improved feed efficiency when fed to nursery pigs.

5.
Transbound Emerg Dis ; 69(1): 137-148, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34369092

ABSTRACT

Soy-based products are known to pose a viable risk to U.S. swine herds because of their ability to harbour and transmit virus. This publication aimed to evaluate soy imports into the United States as a whole and from foreign animal disease positive (FAD-positive) countries to determine which products are being imported in the highest quantities and observe potential trends in imports from FAD-positive countries. Import data were accessed through the United States International Trade Commission website (USITC DataWeb) and summarized using R (version 4.0.2, R core team, Vienna, Austria). Twenty-one different Harmonized Tariff Schedule (HTS) codes were queried to determine quantities (metric tonnes, MT) and breakdown of different soy product types being imported into the United States from 2015 to 2020. A total of 78 different countries exported soy products to the United States in 2019 and 2020 with top contributors being Canada (546,467 and 481,497 MT, respectively), India (397,858 and 430,621 MT, respectively) and Argentina (122,116 and 79,471 MT, respectively). Soy oilcake (582,273 MT) was imported in the largest quantities, followed by organic soybeans (270,194 MT) and soy oil (134,436 MT) for 2020. Of the 78 countries, 46 had cases of FAD reported through the World Organization for Animal Health (OIE) World Animal Health Information Database (WAHIS). Top exporters of soy products to the United States from FAD-positive countries in 2019 and 2020 were India (397,858 and 430,621 MT, respectively), Argentina (122,116 MT in 2019) and Ukraine (40,293 and 56,392 MT, respectively). The risk of FAD introduction to the United States through soy imports can fluctuate based on where FAD outbreaks are occurring, shipping methods and end usage of products. A system to monitor these factors could help make future decisions about trade and risk of FAD introduction to U.S. swine herds.


Subject(s)
Animal Diseases , Animal Feed/analysis , Food Contamination , Glycine max , Swine Diseases , Animal Diseases/epidemiology , Animals , Canada , Commerce , Internationality , Swine , Swine Diseases/epidemiology , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...