Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 109(3): 281-6, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19195649

ABSTRACT

Ancient human hair specimens can shed light on the extent of pre-historic exposures to methylmercury and provide valuable comparison data with current-day exposures, particularly for Indigenous Peoples who continue to rely upon local traditional food resources. Human hair from ancient Aleutian Island Native remains were tested for total and methylmercury (Hg, MeHg) and were radiocarbon dated. The remains were approximately 500 years old (1450 A.D.). For four adults, the mean and median total hair mercury concentration was 5.8 ppm (SD=0.9). In contrast, MeHg concentrations were lower with a mean of 1.2 ppm (SD=1.8) and a median of 0.54 ppm (0.12-3.86). For the five infants, the mean and median MeHg level was 1.2 ppm (SD=1.8) and 0.20 ppm (0.007-4.61), respectively. Segmental analyses showed variations in MeHg concentrations in 1-cm segments, consistent with fluctuations in naturally occurring exposure to mercury through dietary sources. The levels are comparable to or lower than those found in fish and marine mammal-eating populations today who rely far less on subsistence food than pre-historic humans. The findings are, therefore, compatible with increased anthropogenic release of trace metals during the past several centuries.


Subject(s)
Environmental Exposure/analysis , Environmental Pollutants/analysis , Hair/chemistry , Methylmercury Compounds/analysis , Mummies , Alaska , Humans
2.
J Environ Manage ; 81(2): 146-54, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16757094

ABSTRACT

The preparation and characterization of a soil reference material (SOIL-1) from a site polluted with mercury due to the past mercury mining in Idrija, Slovenia is reported. Homogeneity tests and intercomparison exercises for total (T-Hg) and methylmercury (MeHg) were performed. In addition, selective sequential extraction was applied for Hg fractionation, and multielemental analyses were performed by k(0) standardization neutron activation analysis (k(0)-INAA) and inductively coupled mass spectrometry (ICP-MS) for other trace elements. Comparison of different analytical methods, as well as the distribution of data were critically evaluated using descriptive statistics and analysis of variance (ANOVA). Due to the nugget effect (cinnabar particles representing more than 90% of the mercury), homogeneity for T-Hg determination was difficult to achieve. The intercomparison exercise indicated that in order to obtain comparable results for total mercury (T-Hg) sample decomposition by HF must be performed. These data are then in good agreement with non-destructive methods such as k(0)-INAA. Accepted reference values calculated taking into account the results obtained by six and three laboratories, respectively, were 67.1+/-11.3 mg kg(-1) for T-Hg and 4.0+/-1.3 ng g(-1) for MeHg (95% confidence intervals). However, the results obtained for Hg fractionation displayed significant differences in the organically bound fraction and elemental Hg. Results obtained by two laboratories using totally different analytical protocols for other elements showed excellent agreement for most elements. In summary, the results obtained for the SOIL-1 sample were of sufficient quality to suggest its use for quality control in laboratories dealing with mercury contaminated soils.


Subject(s)
Mercury/analysis , Soil Pollutants/analysis , Methylmercury Compounds/analysis , Reference Standards , Slovenia
3.
Sci Total Environ ; 337(1-3): 253-63, 2005 Jan 20.
Article in English | MEDLINE | ID: mdl-15626395

ABSTRACT

Although researchers today generally employ appropriate techniques for the storage and preservation of aqueous samples for ambient-level mercury (ppb) speciation, these methods continue to be poorly documented. Numerous experiments were thus conducted to investigate the effects of acidification and bottle type on holding time for various mercury species [elemental mercury (Hg(0)), ionic mercury (Hg(II)), dimethyl mercury (DMHg), monomethyl mercury (MMHg), and dissolved-to-particulate ratio] as well as total mercury (THg). We documented that THg is stable for at least 300 days when stored at 0.4-0.5% acidity in either Teflon or glass bottles. In cases where THg is adsorbed to bottle walls, the addition of BrCl at least 24 h before analysis allowed all Hg to be quantitatively recovered. Polyethylene bottles allowed diffusion of Hg(0) through the bottle walls to or from the sample, depending on the Hg concentration of the sample and storage atmosphere. MMHg in freshwater samples can be stored refrigerated and unacidified for days to weeks with no observed degradation of MMHg. For long-term storage (at least 250 days), samples should be acidified with 0.4% HCl (v/v) and kept in the dark to avoid photodegradation (approximate t(1/2)=6 months). For saltwater samples, preservation with 0.2% (v/v) H(2)SO(4) is preferred to avoid exceeding the optimal chloride concentration if the distillation procedure is used for MMHg determination. For volatile species (Hg(0) and DMHg), samples should be collected in completely full glass bottles with Teflon-lined caps, as these species are lost rapidly (t(1/2)=10-20 h) from Teflon and polyethylene bottles. Because acids can enhance the rapid oxidation of volatile species, these samples should be stored refrigerated and unacidified and processed within 1-2 days if they cannot be purged and trapped in the field. Hg(II) and the dissolved-to-particulate ratio are more stable and can be stored for a period of days to weeks without preservation.


Subject(s)
Mercury/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Mercury/chemistry , Specimen Handling , Time Factors
4.
Anal Chim Acta ; 546(1): 92-101, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-29569560

ABSTRACT

The rigorous validation of a previously developed research method for the determination of dimethyl mercury ((CH3)2Hg) in environmental samples is presented. During atmospheric analysis, (CH3)2Hg was trapped on Carbotrap™ and analyzed by thermal desorption, isothermal GC separation, and cold vapor atomic fluorescence spectrometry (CVAFS). Water samples were analyzed after direct purging of 100mL aliquots onto Carbotrap™, while sediment and tissue samples were digested with 10mL of 25% KOH in methanol at 60°C and diluted to 40mL with methanol. An ambient air-spiking manifold, which allowed simultaneous replicate sampling, was constructed in a room controlled for temperature and humidity. (CH3)2Hg was introduced into the feed airflow (0.4m3min-1) from a well-calibrated diffusion cell, to obtain a concentration of approximately 5.5ngm-3 as Hg. Samples were collected onto Carbotrap™ columns, and the total volumes quantified by integrating mass flow meters. Trapping efficiency was investigated over a range of sampler flow rates (0.05-0.25Lmin-1), volumes (2-200L), collection temperatures (15-42°C) and relative humidity levels (10-70%). Method detection limits (MDLs), analytical precision and accuracy were quantified for all media. Carbotrap™ was found to be the best choice as a sampling media, whereas Tenax™ was found to be inadequate due to high breakthrough (>70%). This study verified that the method is sufficiently precise, accurate and robust for field sampling at mercury contaminated sites. No interferences were observed from elevated levels of potential co-contaminants, Hg0 (125ngm-3) and H2S (1.27ppmv).

5.
Environ Sci Technol ; 37(22): 5102-8, 2003 Nov 15.
Article in English | MEDLINE | ID: mdl-14655695

ABSTRACT

Determining the chemical speciation of mercury in contaminated mining and industrial environments is essential for predicting its solubility, transport behavior, and potential bioavailability as well as for designing effective remediation strategies. In this study, two techniques for determining Hg speciation--X-ray absorption fine structure (XAFS) spectroscopy and sequential chemical extractions (SCE)--are independently applied to a set of samples with Hg concentrations ranging from 132 to 7539 mg/kg to determine if the two techniques provide comparable Hg speciation results. Generally, the proportions of insoluble HgS (cinnabar, metacinnabar) and HgSe identified by XAFS correlate well with the proportion of Hg removed in the aqua regia extraction demonstrated to remove HgS and HgSe. Statistically significant (>10%) differences are observed however in samples containing more soluble Hg-containing phases (HgCl2, HgO, Hg3S2O4). Such differences may be related to matrix, particle size, or crystallinity effects, which could affect the apparent solubility of Hg phases present. In more highly concentrated samples, microscopy techniques can help characterize the Hg-bearing species in complex multiphase natural samples.


Subject(s)
Environmental Monitoring/methods , Industrial Waste/analysis , Mercury Compounds/analysis , Soil Pollutants/analysis , Mining , Spectrum Analysis/methods , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...