Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Respir Med ; 6(1): 389-397, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38390523

ABSTRACT

Objective: Human and preclinical studies of sulfur mustard (SM)-induced acute and chronic lung injuries highlight the role of unremitting inflammation. We assessed the utility of targeting the novel DAMP and TLR4 ligand, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), utilizing a humanized mAb (ALT-100) in rat models of SM exposure. Methods: Acute (SM 4.2 mg/kg, 24 hrs), subacute (SM 0.8 mg/kg, day 7), subacute (SM 2.1 mg/kg, day 14), and chronic (SM 1.2 mg/kg, day 29) SM models were utilized. Results: Each SM model exhibited significant increases in eNAMPT expression (lung homogenates) and increased levels of phosphorylated NFkB and NOX4. Lung fibrosis (Trichrome staining) was observed in both sub-acute and chronic SM models in conjunction with elevated smooth muscle actin (SMA), TGFß, and IL-1ß expression. SM-exposed rats receiving ALT-100 (1 or 4 mg/kg, weekly) exhibited increased survival, highly significant reductions in histologic/biochemical evidence of lung inflammation and fibrosis (Trichrome staining, decreased pNFkB, SMA, TGFß, NOX4), decreased airways strictures, and decreased plasma cytokine levels (eNAMPT, IL-6, IL-1ß. TNFα). Conclusion: The highly druggable, eNAMPT/TLR4 signaling pathway is a key contributor to SM-induced ROS production, inflammatory lung injury and fibrosis. The ALT-100 mAb is a potential medical countermeasure to address the unmet need to reduce SM-associated lung pathobiology/mortality.

2.
J Pharmacol Exp Ther ; 388(2): 576-585, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37541763

ABSTRACT

Inhalation of high levels of sulfur mustard (SM), a potent vesicating and alkylating agent used in chemical warfare, results in acutely lethal pulmonary damage. Sodium 2-mercaptoethane sulfonate (mesna) is an organosulfur compound that is currently Food and Drug Administration (FDA)-approved for decreasing the toxicity of mustard-derived chemotherapeutic alkylating agents like ifosfamide and cyclophosphamide. The nucleophilic thiol of mesna is a suitable reactant for the neutralization of the electrophilic group of toxic mustard intermediates. In a rat model of SM inhalation, treatment with mesna (three doses: 300 mg/kg intraperitoneally 20 minutes, 4 hours, and 8 hours postexposure) afforded 74% survival at 48 hours, compared with 0% survival at less than 17 hours in the untreated and vehicle-treated control groups. Protection from cardiopulmonary failure by mesna was demonstrated by improved peripheral oxygen saturation and increased heart rate through 48 hours. Additionally, mesna normalized arterial pH and pACO2 Airway fibrin cast formation was decreased by more than 66% in the mesna-treated group at 9 hour after exposure compared with the vehicle group. Finally, analysis of mixtures of a mustard agent and mesna by a 5,5'-dithiobis(2-nitrobenzoic acid) assay and high performance liquid chromatography tandem mass spectrometry demonstrate a direct reaction between the compounds. This study provides evidence that mesna is an efficacious, inexpensive, FDA-approved candidate antidote for SM exposure. SIGNIFICANCE STATEMENT: Despite the use of sulfur mustard (SM) as a chemical weapon for over 100 years, an ideal drug candidate for treatment after real-world exposure situations has not yet been identified. Utilizing a uniformly lethal animal model, the results of the present study demonstrate that sodium 2-mercaptoethane sulfonate is a promising candidate for repurposing as an antidote, decreasing airway obstruction and improving pulmonary gas exchange, tissue oxygen delivery, and survival following high level SM inhalation exposure, and warrants further consideration.


Subject(s)
Chemical Warfare Agents , Mustard Gas , Rats , Animals , Mustard Gas/toxicity , Mesna/pharmacology , Mesna/therapeutic use , Antidotes/pharmacology , Antidotes/therapeutic use , Lung , Sodium , Chemical Warfare Agents/toxicity
3.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L525-L535, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36041220

ABSTRACT

E-cigarette vaping is a major aspect of nicotine consumption, especially for children and young adults. Although it is branded as a safer alternative to cigarette smoking, murine and rat models of subacute and chronic e-cigarette vaping exposure have shown many proinflammatory changes in the respiratory tract. An acute vaping exposure paradigm has not been demonstrated in the golden Syrian hamster, and the hamster is a readily available small animal model that has the unique benefit of becoming infected with and transmitting respiratory viruses, including SARS-CoV-2, without genetic alteration of the animal or virus. Using a 2-day, whole body vaping exposure protocol in male golden Syrian hamsters, we evaluated serum cotinine, bronchoalveolar lavage cells, lung, and nasal histopathology, and gene expression in the nasopharynx and lung through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Depending on the presence of nonnormality or outliers, statistical analysis was performed by ANOVA or Kruskal-Wallis tests. For tests that were statistically significant (P < 0.05), post hoc Tukey-Kramer and Dunn's tests, respectively, were performed to make pairwise comparisons between groups. In nasal tissue, RT-qPCR analysis revealed nicotine-dependent increases in gene expression associated with type 1 inflammation (CCL-5 and CXCL-10), fibrosis [transforming growth factor-ß (TGF-ß)], nicotine-independent increase oxidative stress response (SOD-2), and a nicotine-independent decrease in vasculogenesis/angiogenesis (VEGF-A). In the lung, nicotine-dependent increases in the expression of genes involved in the renin-angiotensin pathway [angiotensin-converting enzyme (ACE), ACE2], coagulation (tissue factor, Serpine-1), extracellular matrix remodeling (MMP-2, MMP-9), type 1 inflammation (IL-1ß, TNF-α, and CXCL-10), fibrosis (TGF-ß and Serpine-1), oxidative stress response (SOD-2), neutrophil extracellular traps release (ELANE), and vasculogenesis and angiogenesis (VEGF-A) were identified. To our knowledge, this is the first demonstration that the Syrian hamster is a viable model of e-cigarette vaping. In addition, this is the first report that e-cigarette vaping with nicotine can increase tissue factor gene expression in the lung. Our results show that even an acute exposure to e-cigarette vaping causes significant upregulation of mRNAs in the respiratory tract from pathways involving the renin-angiotensin system, coagulation, extracellular matrix remodeling, type 1 inflammation, fibrosis, oxidative stress response, neutrophil extracellular trap release (NETosis), vasculogenesis, and angiogenesis.


Subject(s)
Electronic Nicotine Delivery Systems , Transcriptome , Vaping , Animals , Cricetinae , Male , Angiotensin-Converting Enzyme 2 , Angiotensins , Cotinine , Fibrosis , Inflammation/pathology , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Mesocricetus , Nicotine/pharmacology , Renin , Superoxide Dismutase , Thromboplastin , Transforming Growth Factor beta , Tumor Necrosis Factor-alpha , Vaping/adverse effects , Vascular Endothelial Growth Factor A
4.
Ann N Y Acad Sci ; 1479(1): 134-147, 2020 11.
Article in English | MEDLINE | ID: mdl-32233099

ABSTRACT

Methyl isocyanate (MIC, "Bhopal agent") is a highly reactive, toxic industrial chemical. Inhalation of high levels (500-1000 ppm) of MIC vapor is almost uniformly fatal. No therapeutic interventions other than supportive care have been described that can delay the onset of illness or death due to MIC. Recently, we found that inhalation of MIC caused the appearance of activated tissue factor in circulation with subsequent activation of the coagulation cascade. Herein, we report that MIC exposure (500 ppm for 30 min, nose-only) caused deposition of fibrin-rich casts in the conducting airways resulting in respiratory failure and death within 24 h in a rat model (LC90-100 ). We thus investigated the effect of airway delivery of the fibrinolytic agent tissue plasminogen activator (tPA) on mortality and morbidity in this model. Intratracheal administration of tPA was initiated 11 h post MIC exposure and repeated every 4 h for the duration of the study. Treatment with tPA afforded nearly 60% survival at 24 h post MIC exposure and was associated with decreased airway fibrin casts, stabilization of hypoxemia and respiratory distress, and improved acidosis. This work supports the potential of airway-delivered tPA therapy as a useful countermeasure in stabilizing victims of high-level MIC exposure.


Subject(s)
Airway Obstruction , Isocyanates/toxicity , Tissue Plasminogen Activator/pharmacology , Airway Obstruction/chemically induced , Airway Obstruction/drug therapy , Airway Obstruction/physiopathology , Animals , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...