Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686930

ABSTRACT

The effects of resonance interaction of plasmonic and photonic modes in hybrid metal-dielectric structures with square Al nanodisk lattices coupled with a Si waveguide layer were investigated using micro-photoluminescence (micro-PL) spectroscopy. As radiation sources, GeSi quantum dots were embedded in the waveguide. A set of narrow PL peaks superimposed on the broad bands were observed in the range of quantum dot emissions. At optimal parameters of Al nanodisks lattices, almost one order increasing of PL intensity was obtained. The experimental PL spectra are in good agreement with results of theoretical calculations. The realization of high-quality bound states in the continuum was confirmed by a comparative analysis of the experimental spectra and theoretical dispersion dependences. The results demonstrated the perspectives of these type structures for a flat band realization and supporting the slow light.

2.
Nanomaterials (Basel) ; 11(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34578618

ABSTRACT

Group-IV photonic devices that contain Si and Ge are very attractive due to their compatibility with integrated silicon photonics platforms. Despite the recent progress in fabrication of Ge/Si quantum dot (QD) photodetectors, their low quantum efficiency still remains a major challenge and different approaches to improve the QD photoresponse are under investigation. In this paper, we report on the fabrication and optical characterization of Ge/Si QD pin photodiodes integrated with photon-trapping microstructures for near-infrared photodetection. The photon traps represent vertical holes having 2D periodicity with a feature size of about 1 µm on the diode surface, which significantly increase the normal incidence light absorption of Ge/Si QDs due to generation of lateral optical modes in the wide telecommunication wavelength range. For a hole array periodicity of 1700 nm and hole diameter of 1130 nm, the responsivity of the photon-trapping device is found to be enhanced by about 25 times at λ=1.2 µm and by 34 times at λ≈1.6 µm relative to a bare detector without holes. These results make the micro/nanohole Ge/Si QD photodiodes promising to cover the operation wavelength range from the telecom O-band (1260-1360 nm) up to the L-band (1565-1625 nm).

SELECTION OF CITATIONS
SEARCH DETAIL
...