Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Animals (Basel) ; 14(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38200847

ABSTRACT

Fractures caused by bone overloading are a leading cause of euthanasia in Thoroughbred racehorses. The risk of fatal fracture has been shown to be influenced by both environmental and genetic factors but, to date, no specific genetic mechanisms underpinning fractures have been identified. In this study, we utilised a genome-wide polygenic risk score to establish an in vitro cell system to study bone gene regulation in horses at high and low genetic risk of fracture. Candidate gene expression analysis revealed differential expression of COL3A1 and STAT1 genes in osteoblasts derived from high- and low-risk horses. Whole-genome sequencing of two fracture cases and two control horses revealed a single-nucleotide polymorphism (SNP) upstream of COL3A1 that was confirmed in a larger cohort to be significantly associated with fractures. Bioinformatics tools predicted that this SNP may impact the binding of the transcription factor SOX11. Gene modulation demonstrated SOX11 is upstream of COL3A1, and the region binds to nuclear proteins. Furthermore, luciferase assays demonstrated that the region containing the SNP has promoter activity. However, the specific effect of the SNP depends on the broader genetic background of the cells and suggests other factors may also be involved in regulating COL3A1 expression. In conclusion, we have identified a novel SNP that is significantly associated with fracture risk and provide new insights into the regulation of the COL3A1 gene.

2.
Commun Biol ; 5(1): 1348, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36482174

ABSTRACT

Canine atopic dermatitis is an inflammatory skin disease with clinical similarities to human atopic dermatitis. Several dog breeds are at increased risk for developing this disease but previous genetic associations are poorly defined. To identify additional genetic risk factors for canine atopic dermatitis, we here apply a Bayesian mixture model adapted for mapping complex traits and a cross-population extended haplotype test to search for disease-associated loci and selective sweeps in four dog breeds at risk for atopic dermatitis. We define 15 associated loci and eight candidate regions under selection by comparing cases with controls. One associated locus is syntenic to the major genetic risk locus (Filaggrin locus) in human atopic dermatitis. One selection signal in common type Labrador retriever cases positions across the TBC1D1 gene (body weight) and one signal of selection in working type German shepherd controls overlaps the LRP1B gene (brain), near the KYNU gene (psoriasis). In conclusion, we identify candidate genes, including genes belonging to the same biological pathways across multiple loci, with potential relevance to the pathogenesis of canine atopic dermatitis. The results show genetic similarities between dog and human atopic dermatitis, and future across-species genetic comparisons are hereby further motivated.


Subject(s)
Dermatitis, Atopic , Dogs , Animals , Dogs/genetics , Bayes Theorem , Dermatitis, Atopic/genetics , Dermatitis, Atopic/veterinary , Risk Factors
3.
Animals (Basel) ; 12(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36496790

ABSTRACT

Racehorses competing in short (i.e., 'sprinters'), middle- or longer-distance (i.e., 'stayers') flat races are assumed to have natural variation in locomotion; sprinters having an innately shorter stride than stayers. No study has objectively tested this theory. Here, racehorses (n = 421) were categorised as sprinters, milers or stayers based on known race distance (n = 3269 races). Stride parameters (peak length and frequency) of those racehorses were collected from prior race-pace training sessions on turf (n = 2689; 'jumpout', n = 1013), using a locomotion monitoring device. Pedigree information for all 421 racehorses was extracted to three-generations. In training, sprinters had a shorter stride of higher frequency and covered consecutive furlongs faster than stayers (p < 0.001). Relatively short or longer stride did not predict race success, but stayers had greater race success than sprinters (p < 0.001). Peak stride length and frequency were moderately heritable (h2 = 0.15 and 0.20, respectively). In conclusion, differences in stride were apparent between sprinters and stayers (e.g., shorter stride in sprinters) during routine training, even after accounting for their pedigree. Objective data on stride characteristics could supplement other less objectively obtained parameters to benefit trainers in the appropriate selection of races for each individual racehorse.

4.
Phys Biol ; 20(1)2022 11 03.
Article in English | MEDLINE | ID: mdl-36223768

ABSTRACT

Small gene effects involved in complex/omnigenic traits remain costly to analyse using current genome-wide association studies (GWAS) because of the number of individuals required to return meaningful association(s), a.k.a. study power. Inspired by field theory in physics, we provide a different method called genomic informational field theory (GIFT). In contrast to GWAS, GIFT assumes that the phenotype is measured precisely enough and/or the number of individuals in the population is too small to permit the creation of categories. To extract information, GIFT uses the information contained in the cumulative sums difference of gene microstates between two configurations: (i) when the individuals are taken at random without information on phenotype values, and (ii) when individuals are ranked as a function of their phenotypic value. The difference in the cumulative sum is then attributed to the emergence of phenotypic fields. We demonstrate that GIFT recovers GWAS, that is, Fisher's theory, when the phenotypic fields are linear (first order). However, unlike GWAS, GIFT demonstrates how the variance of microstate distribution density functions can also be involved in genotype-phenotype associations when the phenotypic fields are quadratic (second order). Using genotype-phenotype simulations based on Fisher's theory as a toy model, we illustrate the application of the method with a small sample size of 1000 individuals.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods , Sample Size , Genomics/methods , Phenotype , Genotype
5.
J Equine Vet Sci ; 111: 103870, 2022 04.
Article in English | MEDLINE | ID: mdl-35074400

ABSTRACT

Osteochondrosis (OC) is an important skeletal disease causing profound welfare concerns in horses. Although numerous studies have explored the genetics underlying OC in various breeds, the Belgian Warmblood (BW) remains unstudied despite having a concerning prevalence of 32.0%. As a result, this study aimed to conduct genome-wide association (GWA) analyses to identify candidate variants associated with OC in BWs. To achieve this, blood samples and radiographs were collected from 407 Belgian Warmbloods registered to one of two BW studbooks (Belgisch Warmbloedpaard and Zangersheide), and genotyping was performed using the 670K Axiom Equine Genotyping Array. GWA analyses using a principle component approach were then performed on OC status (OCS; presence or absence of OC at any joint), hock OC status (HOC) and stifle OC status (SOC). These analyses yielded significantly associated (P < .01) SNPs on Equus caballus chromosome (ECA) 3, ECA 12, and ECA 18 for OCS; however, no single nucleotide polymorphisms (SNPs) reached significance for HOC or SOC. Subsequent analysis of candidate genes within 500 kilobases of the significant SNPs revealed functions broadly related to cell differentiation and chondrocyte development. While this study represents another step forward in uncovering variants and biological pathways associated with OC, additional studies are needed to validate the newly identified candidate SNPs for OC in BWs. Further studies of OC in BWs, as well as other breeds, are critical in our efforts to fully understand the disease's etiopathogenesis and ultimately provide breeding programs better equipped to improve horse health and well-being.


Subject(s)
Horse Diseases , Osteochondrosis , Animals , Belgium , Cell Differentiation , Chondrocytes/pathology , Genome-Wide Association Study/veterinary , Horse Diseases/genetics , Horses/genetics , Osteochondrosis/genetics , Osteochondrosis/veterinary
6.
Genes (Basel) ; 10(11)2019 11 01.
Article in English | MEDLINE | ID: mdl-31683933

ABSTRACT

Exercise-induced pulmonary haemorrhage (EIPH) occurs in horses performing high-intensity athletic activity. The application of physics principles to derive a 'physical model', which is coherent with existing physiology and cell biology data, shows that critical parameters for capillary rupture are cell-cell adhesion and cell stiffness (cytoskeleton organisation). Specifically, length of fracture in the capillary is a ratio between the energy involved in cell-cell adhesion and the stiffness of cells suggesting that if the adhesion diminishes and/or that the stiffness of cells increases EIPH is more likely to occur. To identify genes associated with relevant cellular or physiological phenotypes, the physical model was used in a post-genome-wide association study (GWAS) to define gene sets associated with the model parameters. The primary study was a GWAS of EIPH where the phenotype was based on weekly tracheal wash samples collected over a two-year period from 72 horses in a flat race training yard. The EIPH phenotype was determined from cytological analysis of the tracheal wash samples, by scoring for the presence of red blood cells and haemosiderophages. Genotyping was performed using the Illumina Equine SNP50 BeadChip and analysed using linear regression in PLINK. Genes within significant genome regions were selected for sets based on their GeneOntology biological process, and analysed using fastBAT. The gene set analysis showed that genes associated with cell stiffness (cytoskeleton organisation) and blood flow have the most significant impact on EIPH risk.


Subject(s)
Genetic Loci , Hemorrhage/genetics , Horse Diseases/genetics , Lung Diseases/genetics , Physical Exertion , Animals , Cytoskeleton/genetics , Female , Genome-Wide Association Study/veterinary , Hemorrhage/etiology , Hemorrhage/pathology , Hemorrhage/veterinary , Horse Diseases/etiology , Horse Diseases/pathology , Horses , Lung Diseases/etiology , Lung Diseases/pathology , Lung Diseases/veterinary , Male , Microvessels/pathology , Phenotype
7.
Animals (Basel) ; 9(10)2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31623070

ABSTRACT

Canine atopic dermatitis (cAD) is a common allergic skin condition in dogs that causes chronic pruritus. The overall quality of life in dogs with cAD is known to be reduced, and human patients with pruritic conditions report significant psychological burdens from pruritus-induced stress, and atopic dermatitis is associated with significant psychopathological morbidities. We tested the hypothesis that dogs with cAD would display more problem behaviours that could be indicative of stress than would healthy controls. Behavioural data were gathered directly from owners using a validated dog behaviour questionnaire for 343 dogs with a diagnosis of cAD and 552 healthy controls, and scores were also provided for their dog's pruritus severity. Regression modelling, controlling for potential confounding variables (age, sex, breed, neuter status or other health problem(s)) showed for the first time that pruritus severity in dogs with cAD was associated with increased frequency of behaviours often considered problematic, such as mounting, chewing, hyperactivity, coprophagia, begging for and stealing food, attention-seeking, excitability, excessive grooming, and reduced trainability. Whilst causality cannot be ascertained from this study, the behaviours that were associated with pruritus severity are redirected, self/environment-directed displacement behaviours, which are often considered indicative of stress. Further investigation is warranted, and stress reduction could be helpful when treating dogs with cAD.

8.
Vet Dermatol ; 30(5): 396-e119, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31407839

ABSTRACT

BACKGROUND: Canine atopic dermatitis (cAD) is one the most common and distressing skin disorders seen in dogs. It is characterized by dysfunction in the skin barrier, with a complex pathogenesis combining both genetic and environmental factors. OBJECTIVES: To evaluate associations between environmental factors and case-control status in two closely related, at-risk breeds, the Labrador retriever and golden retriever. ANIMALS: Two thousand four hundred and forty-five pet dogs, of which 793 were classed as cases (575 Labrador and 218 golden retrievers) and 1,652 as controls (1,120 Labrador and 532 golden retrievers). METHODS AND MATERIALS: Case-control status was assigned based upon owner response to a standardized validated questionnaire. Retrospective data on rearing environment were collected via additional questions. Univariate and multivariate logistic regressions were utilized to evaluate associations between environmental factors and case-control status. RESULTS: Risk factors included being reared in an urban environment (not living currently in an urban environment), being male, being neutered, receiving flea control and being allowed on upholstered furniture. Protective factors included living with other dogs (not cats) and walking in woodlands, fields or beaches. Additionally, amongst Labrador retrievers, chocolate-coloured dogs were at greater risk of having cAD than black- or yellow-coated dogs. CONCLUSIONS AND CLINICAL IMPORTANCE: This study is the largest of its kind to date to investigate the role of the environment in cAD. Although precise triggers are unclear, this study complements earlier studies in highlighting the protective role of a rural environment and some novel associations with disease development.


Subject(s)
Dermatitis, Atopic/veterinary , Dog Diseases/etiology , Environment , Animals , Dermatitis, Atopic/etiology , Dermatitis, Atopic/genetics , Dog Diseases/genetics , Dogs , Female , Genetic Predisposition to Disease , Male , Multivariate Analysis , Odds Ratio , Retrospective Studies , Risk Factors
9.
BMC Genet ; 19(1): 49, 2018 07 30.
Article in English | MEDLINE | ID: mdl-30060732

ABSTRACT

BACKGROUND: Many common and relevant diseases affecting equine welfare have yet to be tested regarding structural variants such as copy number variations (CNVs). CNVs make up a substantial proportion of total genetic variability in populations of many species, resulting in more sequence differences between individuals than SNPs. Associations between CNVs and disease phenotypes have been established in several species, but equine CNV studies have been limited. Aim of this study was to identify CNVs and to perform a genome-wide association (GWA) study in Friesian horses to identify genomic loci associated with insect bite hypersensitivity (IBH), a common seasonal allergic dermatitis observed in many horse breeds worldwide. RESULTS: Genotypes were obtained using the Axiom® Equine Genotyping Array containing 670,796 SNPs. After quality control of genotypes, 15,041 CNVs and 5350 CNV regions (CNVRs) were identified in 222 Friesian horses. Coverage of the total genome by CNVRs was 11.2% with 49.2% of CNVRs containing genes. 58.0% of CNVRs were novel (i.e. so far only identified in Friesian horses). A SNP- and CNV-based GWA analysis was performed, where about half of the horses were affected by IBH. The SNP-based analysis showed a highly significant association between the MHC region on ECA20 and IBH in Friesian horses. Associations between the MHC region on ECA20 and IBH were also detected based on the CNV-based analysis. However, CNVs associated with IBH in Friesian horses were not often in close proximity to SNPs identified to be associated with IBH. CONCLUSIONS: CNVs were identified in a large sample of the Friesian horse population, thereby contributing to our knowledge on CNVs in horses and facilitating our understanding of the equine genome and its phenotypic expression. A clear association was identified between the MHC region on ECA20 and IBH in Friesian horses based on both SNP- and CNV-based GWA studies. These results imply that MHC contributes to IBH sensitivity in Friesian horses. Although subsequent analyses are needed for verification, nucleotide differences, as well as more complex structural variations like CNVs, seem to contribute to IBH sensitivity. IBH should be considered as a common disease with a complex genomic architecture.


Subject(s)
Horses/genetics , Hypersensitivity/veterinary , Insect Bites and Stings/veterinary , Animals , DNA Copy Number Variations , Genome-Wide Association Study/veterinary , Hypersensitivity/genetics , Insect Bites and Stings/genetics , Polymorphism, Single Nucleotide , Risk Factors
10.
Front Genet ; 9: 101, 2018.
Article in English | MEDLINE | ID: mdl-29643866

ABSTRACT

Canine hip dysplasia, a debilitating orthopedic disorder that leads to osteoarthritis and cartilage degeneration, is common in several large-sized dog breeds and shows moderate heritability suggesting that selection can reduce prevalence. Estimating genomic breeding values require large reference populations, which are expensive to genotype for development of genomic prediction tools. Combining datasets from different countries could be an option to help build larger reference datasets without incurring extra genotyping costs. Our objective was to evaluate genomic prediction based on a combination of UK and US datasets of genotyped dogs with records of Norberg angle scores, related to canine hip dysplasia. Prediction accuracies using a single population were 0.179 and 0.290 for 1,179 and 242 UK and US Labrador Retrievers, respectively. Prediction accuracies changed to 0.189 and 0.260, with an increased bias of genomic breeding values when using a joint training set (biased upwards for the US population and downwards for the UK population). Our results show that in this study of canine hip dysplasia, little or no benefit was gained from using a joint training set as compared to using a single population as training set. We attribute this to differences in the genetic background of the two populations as well as the small sample size of the US dataset.

11.
BMC Genomics ; 18(1): 609, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28806925

ABSTRACT

BACKGROUND: Genomic methods have proved to be important tools in the analysis of genetic diversity across the range of species and can be used to reveal processes underlying both short- and long-term evolutionary change. This study applied genomic methods to investigate population structure and inbreeding in a common UK dog breed, the Labrador Retriever. RESULTS: We found substantial within-breed genetic differentiation, which was associated with the role of the dog (i.e. working, pet, show) and also with coat colour (i.e. black, yellow, brown). There was little evidence of geographical differentiation. Highly differentiated genomic regions contained genes and markers associated with skull shape, suggesting that at least some of the differentiation is related to human-imposed selection on this trait. We also found that the total length of homozygous segments (runs of homozygosity, ROHs) was highly correlated with inbreeding coefficient. CONCLUSIONS: This study demonstrates that high-density genomic data can be used to quantify genetic diversity and to decipher demographic and selection processes. Analysis of genetically differentiated regions in the UK Labrador Retriever population suggests the possibility of human-imposed selection on craniofacial characteristics. The high correlation between estimates of inbreeding from genomic and pedigree data for this breed demonstrates that genomic approaches can be used to quantify inbreeding levels in dogs, which will be particularly useful where pedigree information is missing.


Subject(s)
Genomics , Animals , Dogs , Female , Genotype , Homozygote , Inbreeding , Linkage Disequilibrium , Male , Oligonucleotide Array Sequence Analysis , Pedigree , Polymorphism, Single Nucleotide
12.
Genetics ; 206(2): 1101-1111, 2017 06.
Article in English | MEDLINE | ID: mdl-28396505

ABSTRACT

The genetic architecture of behavioral traits in dogs is of great interest to owners, breeders, and professionals involved in animal welfare, as well as to scientists studying the genetics of animal (including human) behavior. The genetic component of dog behavior is supported by between-breed differences and some evidence of within-breed variation. However, it is a challenge to gather sufficiently large datasets to dissect the genetic basis of complex traits such as behavior, which are both time-consuming and logistically difficult to measure, and known to be influenced by nongenetic factors. In this study, we exploited the knowledge that owners have of their dogs to generate a large dataset of personality traits in Labrador Retrievers. While accounting for key environmental factors, we demonstrate that genetic variance can be detected for dog personality traits assessed using questionnaire data. We identified substantial genetic variance for several traits, including fetching tendency and fear of loud noises, while other traits revealed negligibly small heritabilities. Genetic correlations were also estimated between traits; however, due to fairly large SEs, only a handful of trait pairs yielded statistically significant estimates. Genomic analyses indicated that these traits are mainly polygenic, such that individual genomic regions have small effects, and suggested chromosomal associations for six of the traits. The polygenic nature of these traits is consistent with previous behavioral genetics studies in other species, for example in mouse, and confirms that large datasets are required to quantify the genetic variance and to identify the individual genes that influence behavioral traits.


Subject(s)
Behavior, Animal , Genomics , Multifactorial Inheritance/genetics , Personality/genetics , Animals , Breeding , Chromosome Mapping , Dogs , Genetic Variation , Genome/genetics , Phenotype
13.
J Hered ; 107(6): 537-43, 2016 11.
Article in English | MEDLINE | ID: mdl-27489252

ABSTRACT

Recurrent exertional rhabdomyolysis (RER) in Thoroughbred and Standardbred racehorses is characterized by episodes of muscle rigidity and cell damage that often recur upon strenuous exercise. The objective was to evaluate the importance of genetic factors in RER by obtaining an unbiased estimate of heritability in cohorts of unrelated Thoroughbred and Standardbred racehorses. Four hundred ninety-one Thoroughbred and 196 Standardbred racehorses were genotyped with the 54K or 74K SNP genotyping arrays. Heritability was calculated from genome-wide SNP data with a mixed linear and Bayesian model, utilizing the standard genetic relationship matrix (GRM). Both the mixed linear and Bayesian models estimated heritability of RER in Thoroughbreds to be approximately 0.34 and in Standardbred racehorses to be approximately 0.45 after adjusting for disease prevalence and sex. To account for potential differences in the genetic architecture of the underlying causal variants, heritability estimates were adjusted based on linkage disequilibrium weighted kinship matrix, minor allele frequency and variant effect size, yielding heritability estimates that ranged between 0.41-0.46 (Thoroughbreds) and 0.39-0.49 (Standardbreds). In conclusion, between 34-46% and 39-49% of the variance in RER susceptibility in Thoroughbred and Standardbred racehorses, respectively, can be explained by the SNPs present on these 2 genotyping arrays, indicating that RER is moderately heritable. These data provide further rationale for the investigation of genetic mutations associated with RER susceptibility.


Subject(s)
Genetic Predisposition to Disease , Genotype , Heredity , Horse Diseases/genetics , Polymorphism, Single Nucleotide , Rhabdomyolysis/veterinary , Animals , Bayes Theorem , Female , Genetic Linkage , Horses , Linkage Disequilibrium , Male , Models, Genetic
14.
PLoS One ; 11(4): e0152966, 2016.
Article in English | MEDLINE | ID: mdl-27070818

ABSTRACT

While susceptibility to hypersensitive reactions is a common problem amongst humans and animals alike, the population structure of certain animal species and breeds provides a more advantageous route to better understanding the biology underpinning these conditions. The current study uses Exmoor ponies, a highly inbred breed of horse known to frequently suffer from insect bite hypersensitivity, to identify genomic regions associated with a type I and type IV hypersensitive reaction. A total of 110 cases and 170 controls were genotyped on the 670K Axiom Equine Genotyping Array. Quality control resulted in 452,457 SNPs and 268 individuals being tested for association. Genome-wide association analyses were performed using the GenABEL package in R and resulted in the identification of two regions of interest on Chromosome 8. The first region contained the most significant SNP identified, which was located in an intron of the DCC netrin 1 receptor gene. The second region identified contained multiple top SNPs and encompassed the PIGN, KIAA1468, TNFRSF11A, ZCCHC2, and PHLPP1 genes. Although additional studies will be needed to validate the importance of these regions in horses and the relevance of these regions in other species, the knowledge gained from the current study has the potential to be a step forward in unraveling the complex nature of hypersensitive reactions.


Subject(s)
Horse Diseases/genetics , Hypersensitivity/veterinary , Insect Bites and Stings/veterinary , Animals , Female , Genes, DCC , Genome-Wide Association Study , Horse Diseases/immunology , Horses/genetics , Horses/immunology , Hypersensitivity/genetics , Hypersensitivity/immunology , Inbreeding , Insect Bites and Stings/genetics , Insect Bites and Stings/immunology , Linkage Disequilibrium , Male , Polymorphism, Single Nucleotide , Risk Factors , Skin Diseases, Genetic/genetics , Skin Diseases, Genetic/immunology , Skin Diseases, Genetic/veterinary
15.
Front Genet ; 6: 97, 2015.
Article in English | MEDLINE | ID: mdl-25821457

ABSTRACT

Increased concern for the welfare of pedigree dogs has led to development of selection programs against inherited diseases. An example is canine hip dysplasia (CHD), which has a moderate heritability and a high prevalence in some large-sized breeds. To date, selection using phenotypes has led to only modest improvement, and alternative strategies such as genomic selection (GS) may prove more effective. The primary aims of this study were to compare the performance of pedigree- and genomic-based breeding against CHD in the UK Labrador retriever population and to evaluate the performance of different GS methods. A sample of 1179 Labrador Retrievers evaluated for CHD according to the UK scoring method (hip score, HS) was genotyped with the Illumina CanineHD BeadChip. Twelve functions of HS and its component traits were analyzed using different statistical methods (GBLUP, Bayes C and Single-Step methods), and results were compared with a pedigree-based approach (BLUP) using cross-validation. Genomic methods resulted in similar or higher accuracies than pedigree-based methods with training sets of 944 individuals for all but the untransformed HS, suggesting that GS is an effective strategy. GBLUP and Bayes C gave similar prediction accuracies for HS and related traits, indicating a polygenic architecture. This conclusion was also supported by the low accuracies obtained in additional GBLUP analyses performed using only the SNPs with highest test statistics, also indicating that marker-assisted selection (MAS) would not be as effective as GS. A Single-Step method that combines genomic and pedigree information also showed higher accuracy than GBLUP and Bayes C for the log-transformed HS, which is currently used for pedigree based evaluations in UK. In conclusion, GS is a promising alternative to pedigree-based selection against CHD, requiring more phenotypes with genomic data to improve further the accuracy of prediction.

16.
BMC Genomics ; 15: 833, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25270232

ABSTRACT

BACKGROUND: Canine hip dysplasia (CHD) is characterised by a malformation of the hip joint, leading to osteoarthritis and lameness. Current breeding schemes against CHD have resulted in measurable but moderate responses. The application of marker-assisted selection, incorporating specific markers associated with the disease, or genomic selection, incorporating genome-wide markers, has the potential to dramatically improve results of breeding schemes. Our aims were to identify regions associated with hip dysplasia or its related traits using genome and chromosome-wide analysis, study the linkage disequilibrium (LD) in these regions and provide plausible gene candidates. This study is focused on the UK Labrador Retriever population, which has a high prevalence of the disease and participates in a recording program led by the British Veterinary Association (BVA) and The Kennel Club (KC). RESULTS: Two genome-wide and several chromosome-wide QTLs affecting CHD and its related traits were identified, indicating regions related to hip dysplasia. CONCLUSION: Consistent with previous studies, the genetic architecture of CHD appears to be based on many genes with small or moderate effect, suggesting that genomic selection rather than marker-assisted selection may be an appropriate strategy for reducing this disease.


Subject(s)
Chromosome Mapping , Hip Dysplasia, Canine/genetics , Phenotype , Quantitative Trait Loci/genetics , Animals , Chromosomes, Mammalian/genetics , Dogs , Genomics , Polymorphism, Single Nucleotide
17.
Vet J ; 200(2): 253-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24679457

ABSTRACT

A retrospective cohort study of distal limb fracture and superficial digital flexor tendon (SDFT) injury in Thoroughbred racehorses was conducted using health records generated by the British Horseracing Authority (BHA) between 2000 and 2010. After excluding records of horses that had both flat and jump racing starts, repeated records were reduced to a single binary record per horse (n = 66,507, 2982 sires), and the heritability of each condition was estimated using residual maximum likelihood (REML) with animal logistic regression models. Similarly, the heritability of each condition was estimated for the flat racing and jump racing populations separately. Bivariate mixed models were used to generate estimates of genetic correlations between SDFT injury and distal limb fracture. The heritability of distal limb fracture ranged from 0.21 to 0.37. The heritability of SDFT injury ranged from 0.31 to 0.34. SDFT injury and distal limb fracture were positively genetically correlated. These findings suggest that reductions in the risk of the conditions studied could be attempted using targeted breeding strategies.


Subject(s)
Fractures, Bone/veterinary , Horses/genetics , Horses/injuries , Tendon Injuries/veterinary , Animals , Fractures, Bone/etiology , Fractures, Bone/genetics , Retrospective Studies , Sports , Tendon Injuries/etiology , Tendon Injuries/genetics , United Kingdom
18.
BMC Genomics ; 15: 147, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24559379

ABSTRACT

BACKGROUND: Thoroughbred racehorses are subject to non-traumatic distal limb bone fractures that occur during racing and exercise. Susceptibility to fracture may be due to underlying disturbances in bone metabolism which have a genetic cause. Fracture risk has been shown to be heritable in several species but this study is the first genetic analysis of fracture risk in the horse. RESULTS: Fracture cases (n = 269) were horses that sustained catastrophic distal limb fractures while racing on UK racecourses, necessitating euthanasia. Control horses (n = 253) were over 4 years of age, were racing during the same time period as the cases, and had no history of fracture at the time the study was carried out. The horses sampled were bred for both flat and National Hunt (NH) jump racing. 43,417 SNPs were employed to perform a genome-wide association analysis and to estimate the proportion of genetic variance attributable to the SNPs on each chromosome using restricted maximum likelihood (REML). Significant genetic variation associated with fracture risk was found on chromosomes 9, 18, 22 and 31. Three SNPs on chromosome 18 (62.05 Mb - 62.15 Mb) and one SNP on chromosome 1 (14.17 Mb) reached genome-wide significance (p < 0.05) in a genome-wide association study (GWAS). Two of the SNPs on ECA 18 were located in a haplotype block containing the gene zinc finger protein 804A (ZNF804A). One haplotype within this block has a protective effect (controls at 1.95 times less risk of fracture than cases, p = 1 × 10(-4)), while a second haplotype increases fracture risk (cases at 3.39 times higher risk of fracture than controls, p = 0.042). CONCLUSIONS: Fracture risk in the Thoroughbred horse is a complex condition with an underlying genetic basis. Multiple genomic regions contribute to susceptibility to fracture risk. This suggests there is the potential to develop SNP-based estimators for genetic risk of fracture in the Thoroughbred racehorse, using methods pioneered in livestock genetics such as genomic selection. This information would be useful to racehorse breeders and owners, enabling them to reduce the risk of injury in their horses.


Subject(s)
Fractures, Bone/genetics , Genetic Variation , Genome-Wide Association Study , Horses/genetics , Animals , Chromosomes, Mammalian , Gene Frequency , Genetic Predisposition to Disease , Haplotypes , Linkage Disequilibrium , Male , Polymorphism, Single Nucleotide , Risk
19.
Genet Sel Evol ; 46: 9, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24495673

ABSTRACT

BACKGROUND: Despite the dramatic reduction in the cost of high-density genotyping that has occurred over the last decade, it remains one of the limiting factors for obtaining the large datasets required for genomic studies of disease in the horse. In this study, we investigated the potential for low-density genotyping and subsequent imputation to address this problem. RESULTS: Using the haplotype phasing and imputation program, BEAGLE, it is possible to impute genotypes from low- to high-density (50K) in the Thoroughbred horse with reasonable to high accuracy. Analysis of the sources of variation in imputation accuracy revealed dependence both on the minor allele frequency of the single nucleotide polymorphisms (SNPs) being imputed and on the underlying linkage disequilibrium structure. Whereas equidistant spacing of the SNPs on the low-density panel worked well, optimising SNP selection to increase their minor allele frequency was advantageous, even when the panel was subsequently used in a population of different geographical origin. Replacing base pair position with linkage disequilibrium map distance reduced the variation in imputation accuracy across SNPs. Whereas a 1K SNP panel was generally sufficient to ensure that more than 80% of genotypes were correctly imputed, other studies suggest that a 2K to 3K panel is more efficient to minimize the subsequent loss of accuracy in genomic prediction analyses. The relationship between accuracy and genotyping costs for the different low-density panels, suggests that a 2K SNP panel would represent good value for money. CONCLUSIONS: Low-density genotyping with a 2K SNP panel followed by imputation provides a compromise between cost and accuracy that could promote more widespread genotyping, and hence the use of genomic information in horses. In addition to offering a low cost alternative to high-density genotyping, imputation provides a means to combine datasets from different genotyping platforms, which is becoming necessary since researchers are starting to use the recently developed equine 70K SNP chip. However, more work is needed to evaluate the impact of between-breed differences on imputation accuracy.


Subject(s)
Genotyping Techniques/methods , Horses/genetics , Animals , Female , Gene Frequency , Genome , Genotype , Genotyping Techniques/economics , Linkage Disequilibrium , Male , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable
20.
Vet J ; 198(3): 611-5, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23746478

ABSTRACT

A retrospective cohort study of important musculoskeletal conditions of Thoroughbred racehorses was conducted using health records generated over a 15 year period (n=5062, 1296 sires). The prevalence of each condition in the study population was: fracture, 13%; osteoarthritis, 10%; suspensory ligament injury, 10%; and tendon injury, 19%. Linear and logistic sire and animal regression models were built to describe the binary occurrence of these musculoskeletal conditions, and to evaluate the significance of possible environmental risk factors. The heritability of each condition was estimated using residual maximum likelihood (REML). Bivariate mixed models were used to generate estimates of genetic correlations between each pair of conditions. Heritability estimates of fracture, osteoarthritis, suspensory ligament and tendon injury were small to moderate (range: 0.01-0.20). Fracture was found to be positively genetically correlated with both osteoarthritis and suspensory ligament injury. These results suggest that there is a significant genetic component involved in the risk of the studied conditions. Due to positive genetic correlations, a reduction in prevalence of one of the correlated conditions may effect a reduction in risk of the other condition.


Subject(s)
Horse Diseases/epidemiology , Horse Diseases/genetics , Musculoskeletal Diseases/veterinary , Quantitative Trait, Heritable , Animals , Cohort Studies , Female , Hong Kong/epidemiology , Horses , Likelihood Functions , Logistic Models , Male , Musculoskeletal Diseases/epidemiology , Musculoskeletal Diseases/genetics , Prevalence , Retrospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...