Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 123(2): 548-559, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31851563

ABSTRACT

The vestibular end-organs encode for linear and angular head accelerations in space contributing to our internal representation of self-motion. Activation of the vestibular system with transmastoid electrical current has recently grown in popularity; however, a direct relationship between electrically evoked and mechanically evoked vestibular responses remains elusive in humans. We have developed and tested a mechanical-to-electrical vestibular stimulus conversion model incorporating physiological activation of primary vestibular afferents identified in nonhuman primates. We compared ocular torsional responses between mechanical (chair rotation) and model-derived electrical (binaural-bipolar) stimuli in separate experiments for an angular velocity step change (±10 deg/s over 1 s, ±4-mA peak amplitude; n = 10) and multisine angular velocities (±10 deg/s, 9.7 mA peak to peak, 0.05-1 Hz; n = 5), respectively. Perception of whole body rotation (n = 18) to our step-change stimuli was also evaluated. Ocular torsional slow-phase velocity responses between stimulation types were similar (paired two one-sided tests of equivalence: multiple P < 0.002; one-sample t test: P = 0.178) and correlated (Pearson's coefficient: multiple P < 0.001). Bootstrap analysis of perceived angular velocity likewise showed similarity in perceptual decay dynamics. These data suggest that central processing between stimuli was similar, and our vestibular stimulus conversion model with a conversion factor of ∼0.4 mA per deg/s for an angular velocity step change can generate electrical stimuli that replicates dynamic vestibular activation elicited by mechanical whole body rotations. This proposed vestibular conversion model represents an initial framework for using electrical stimuli to generate mechanically equivalent activation of primary vestibular afferents for use in biomedical applications and immersive reality technologies.NEW & NOTEWORTHY With the growing popularity of electrical vestibular stimulation in biomedical and immersive reality applications, a direct conversion model between electrical and mechanical vestibular stimuli is needed. We developed a model to generate electrical stimuli mimicking the physiological activation of vestibular afferents evoked by mechanical rotations. Ocular and perceptual responses evoked by mechanical and model-derived electrical stimuli were similar, thus providing a critical first step toward generation of electrically induced vestibular responses that have a realistic mechanical equivalent.


Subject(s)
Kinesthesis/physiology , Models, Biological , Reflex, Vestibulo-Ocular/physiology , Vestibule, Labyrinth/physiology , Adult , Afferent Pathways/physiology , Biomedical Research , Electric Stimulation , Female , Humans , Male , Virtual Reality , Young Adult
3.
Neuroscience ; 269: 21-34, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24680855

ABSTRACT

The rapid release of prepared movements by a loud acoustic stimulus capable of eliciting a startle response has been termed the StartReact effect (Valls-Solé et al., 1999), and premotor reaction times (PMTs) of <70 ms are often observed. Two explanations have been given for these short latency responses. The subcortical storage and triggering hypothesis suggests movements that can be prepared in advance of a "go" signal are stored and triggered from subcortical areas by a startling acoustic stimulus (SAS) without cortical involvement. Alternatively, it has been hypothesized that the SAS can trigger movements from cortical areas through a faster pathway ascending from subcortical structures. Two experiments were designed to examine the possible role of the primary motor cortex in the StartReact effect. In Experiment 1, we used suprathreshold transcranial magnetic stimulation (TMS) during the reaction time (RT) interval to induce a cortical silent period in the contralateral primary motor cortex (M1). Thirteen participants performed 20° wrist extension movements as fast as possible in response to either a control stimulus (82 dB) or SAS (124 dB). PMTs for startle trials were faster than for control trials, while TMS significantly delayed movement onset compared to No TMS or Sham TMS conditions. In Experiment 2, we examined the StartReact effect in a highly cortically represented action involving speech of a consonant-vowel (CV) syllable. Similar to previous work examining limb movements, a robust StartReact effect was found. Collectively, these experiments provide evidence for cortical (M1) involvement in the StartReact effect.


Subject(s)
Lip/physiology , Motor Cortex/physiology , Psychomotor Performance/physiology , Reflex, Startle/physiology , Speech/physiology , Wrist/physiology , Acoustic Stimulation , Electromyography , Female , Humans , Male , Models, Neurological , Neuropsychological Tests , Reaction Time/physiology , Transcranial Magnetic Stimulation , Young Adult
4.
Exp Brain Res ; 225(1): 1-10, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23183638

ABSTRACT

The application of resistance during the swing phase of locomotion is a viable approach to enhance activity in the rectus femoris (RF) in patients with neurological damage. Increased muscle activity is also accompanied by changes in joint angle and stride frequency, consequently influencing joint angular velocity, making it difficult to attribute neuromuscular changes in RF to resistance. Thus, the purpose of this study was to evaluate the effects of resistance on RF activity while constraining joint trajectories. Participants walked in three resistance conditions; 0 % (no resistance), 5 and 10 % of their maximum voluntary contraction (MVC). Visual and auditory biofeedback was provided to help participants maintain the same knee joint angle and stride frequency as during baseline walking. Lower limb joint trajectories and RF activity were recorded. Increasing the resistance, while keeping joint trajectories constant with biofeedback, independently enhanced swing phase RF activity. Therefore, the observed effects in RF are related to resistance, independent of any changes in joint angle. Considering resistance also affects stride frequency, a second experiment was conducted to evaluate the independent effects of resistance and stride frequency on RF activity. Participants walked in four combinations of resistance at 0 and 10 %MVC and natural and slow stride frequency conditions. We observed significant increases in RF activity with increased resistance and decreased stride frequency, confirming the independent contribution of resistance on RF activity as well as the independent effect of stride frequency. Resistance and stride frequency may be key parameters in gait rehabilitation strategies where either of these may be manipulated to enhance swing phase flexor muscle activity in order to maximize rehabilitation outcomes.


Subject(s)
Lower Extremity/physiology , Muscle, Skeletal/physiology , Robotics , Adult , Algorithms , Data Interpretation, Statistical , Electromyography , Female , Functional Laterality/physiology , Hip/physiology , Humans , Knee Joint/anatomy & histology , Knee Joint/physiology , Leg/innervation , Leg/physiology , Lower Extremity/innervation , Male , Muscle, Skeletal/innervation , Walking/physiology , Young Adult
5.
J Physiol ; 586(13): 3183-93, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18467366

ABSTRACT

Activity in both muscle spindle endings and cutaneous stretch receptors contributes to the sensation of joint movement. The present experiments assessed whether muscle pain and subcutaneous pain distort proprioception in humans. The ability to detect the direction of passive movements at the interphalangeal joint of the thumb was measured when pain was induced experimentally in four sites: the flexor pollicis longus (FPL), the subcutaneous tissue overlying this muscle, the flexor carpi radialis (FCR) muscle and the subcutaneous tissue distal to the metacarpophalangeal joint of thumb. Tests were conducted when pain was at a similar subjective intensity. There was no significant difference in the ability to detect flexion or extension under any painful or non-painful condition. The detection of movement was significantly impaired when pain was induced in the FPL muscle, but pain in the FCR, a nearby muscle that does not act on the thumb, had no effect. Subcutaneous pain also significantly impaired movement detection when initiated in skin overlying the thumb, but not in skin overlying the FPL muscle in the forearm. These findings suggest that while both muscle and skin pain can disturb the detection of the direction of movement, the impairment is site-specific and involves regions and tissues that have a proprioceptive role at the joint. Also, pain induced in FPL did not significantly increase the perceived size of the thumb. Proprioceptive mechanisms signalling perceived body size are less disturbed by a relevant muscle nociceptive input than those subserving movement detection. The results highlight the complex relationship between nociceptive inputs and their influence on proprioception and motor control.


Subject(s)
Pain/chemically induced , Proprioception/physiology , Thumb/physiology , Adult , Female , Humans , Injections, Intramuscular , Male , Pain Measurement , Sodium Chloride/toxicity , Thumb/innervation
SELECTION OF CITATIONS
SEARCH DETAIL
...