Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 4190, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30305618

ABSTRACT

How a single bacterium becomes a colony of many thousand cells is important in biomedicine and food safety. Much is known about the molecular and genetic bases of this process, but less about the underlying physical mechanisms. Here we study the growth of single-layer micro-colonies of rod-shaped Escherichia coli bacteria confined to just under the surface of soft agarose by a glass slide. Analysing this system as a liquid crystal, we find that growth-induced activity fragments the colony into microdomains of well-defined size, whilst the associated flow orients it tangentially at the boundary. Topological defect pairs with charges [Formula: see text] are produced at a constant rate, with the [Formula: see text] defects being propelled to the periphery. Theoretical modelling suggests that these phenomena have different physical origins from similar observations in other extensile active nematics, and a growing bacterial colony belongs to a new universality class, with features reminiscent of the expanding universe.


Subject(s)
Escherichia coli/growth & development , Models, Biological , Colony Count, Microbial , Computer Simulation , Stress, Physiological
2.
Soft Matter ; 13(35): 5933-5941, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28770268

ABSTRACT

We study the dynamics of an active gel droplet with imposed orientational anchoring (normal or planar) at its surface. We find that if the activity is large enough droplets subject to strong anchoring spontaneously start to rotate, with the sense of rotation randomly selected by fluctuations. Contractile droplets rotate only for planar anchoring and extensile ones only for normal anchoring. This is because such a combination leads to a pair of stable elastic deformations which creates an active torque to power the rotation. Interestingly, under these conditions there is a conflict between the anchoring promoted thermodynamically and that favoured by activity. By tuning activity and anchoring strength, we find a wealth of qualitatively different droplet morphologies and spatiotemporal patterns, encompassing steady rotations, oscillations, and more irregular trajectories. The spontaneous rotations we observe are fundamentally different from previously reported instances of rotating defects in active fluids as they require the presence of strong enough anchoring and entail significant droplet shape deformations.

3.
J Phys Condens Matter ; 25(24): 245103, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23709473

ABSTRACT

We consider a nematic liquid crystal, in coexistence with its isotropic phase, in contact with a substrate patterned with rectangular grooves. In such a system the nematic phase may fill the grooves without the occurrence of complete wetting. There may exist multiple (meta)stable filled states, each characterized by the type of distortion (bend or splay) in each corner of the groove and by the shape of the nematic-isotropic interface, and additionally the plateaux that separate the grooves may be either dry or wet with a thin layer of nematic. Using numerical simulations, we analyse the dynamical response of the system to an externally-applied electric field, with the aim of identifying switching transitions between these filled states. We find that order-electric coupling between the fluid and the field provides a means of switching between states where the plateaux between grooves are dry and states where they are wetted by a nematic layer, without affecting the configuration of the nematic within the groove. We find that flexoelectric coupling may change the nematic texture in the groove, provided that the flexoelectric coupling differentiates between the types of distortion at the corners of the substrate. We identify intermediate stages of the transitions, and the role played by the motion of the nematic-isotropic interface. We determine quantitatively the field magnitudes and orientations required to effect each type of transition.

4.
Philos Trans A Math Phys Eng Sci ; 369(1945): 2519-27, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21576167

ABSTRACT

We present and interpret lattice Boltzmann simulations of thick films spreading on surfaces patterned with polygonal posts. We show that the mechanism of pinning and depinning differs with the direction of advance, and demonstrate that this leads to anisotropic spreading within a certain range of material contact angles.

5.
Langmuir ; 26(20): 16071-83, 2010 Oct 19.
Article in English | MEDLINE | ID: mdl-20843052

ABSTRACT

We investigate the wetting properties of surfaces patterned with fine elastic hairs, with an emphasis on identifying superhydrophobic states on hydrophilic hairs. We formulate a 2D model of a large drop in contact with a row of equispaced elastic hairs and, by minimizing the free energy of the model, identify the stable and metastable states. In particular, we concentrate on partially suspended states, where the hairs bend to support the drop--singlet states, where all hairs bend in the same direction, and doublet states, where neighboring hairs bend in opposite directions--and find the limits of stability of these configurations in terms of the material contact angle, hair flexibility, and system geometry. The drop can remain suspended in a singlet state at hydrophilic contact angles, but doublets exist only when the hairs are hydrophobic. The system is more likely to evolve into a singlet state if the hairs are inclined at the root. We discuss how, under limited circumstances, the results can be modified to describe an array of hairs in three dimensions. We find that now both singlets and doublets can exhibit superhydrophobic behavior on hydrophilic hairs. We discuss the limitations of our approach and the directions for future work.

6.
J Phys Condens Matter ; 21(46): 464125, 2009 Nov 18.
Article in English | MEDLINE | ID: mdl-21715889

ABSTRACT

We present and interpret simulation results showing how a fluid moves on a hydrophilic substrate patterned by a square array of triangular posts. We demonstrate that the shape of the posts leads to anisotropic spreading, and discuss how this is influenced by the different ways in which the posts can pin the advancing front.

SELECTION OF CITATIONS
SEARCH DETAIL
...