Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 487: 97-101, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24784733

ABSTRACT

Accelerated oxidative weathering in a reaction cell (ASTM D 5744 standard protocol) was performed over a 33 week period on well characterized, sulfidic mine waste from the Kidd Creek Cu-Zn volcanogenic massive sulfide deposit, Canada. The cell leachate was monitored for physicochemical parameters, ion concentrations and stable isotope ratios of zinc. Filtered zinc concentrations (<0.45 µm) in the leachate ranged between 4.5 mg L(-1) and 1.9 g L(-1)-potentially controlled by pH, mineral solubility kinetics and (de)sorption processes. The zinc stable isotope ratios varied mass-dependently within +0.1 and +0.52‰ relative to IRMM 3702, and were strongly dependent on the pH (rpH-d66Zn=0.65, p<0.005, n=31). At a pH below 5, zinc mobilization was governed by sphalerite oxidation and hydroxide dissolution-pointing to the isotope signature of sphalerite (+0.1 to +0.16‰). Desorption processes resulted in enrichment of (66)Zn in the leachate reaching a maximum offset of +0.32‰ compared to the proposed sphalerite isotope signature. Over a period characterized by pH=6.1 ± 0.6, isotope ratios were significantly more enriched in (66)Zn with an offset of ≈ 0.23‰ compared to sphalerite, suggesting that zinc release may have been derived from a second zinc source, such as carbonate minerals, which compose 8 wt.% of the tailings. This preliminary study confirms the benefit of applying zinc isotopes alongside standard monitoring parameters to track principal zinc sources and weathering processes in complex multi-phase matrices.


Subject(s)
Environmental Monitoring , Mining , Soil Pollutants/analysis , Zinc/analysis , Canada , Chemical Fractionation , Industrial Waste , Minerals/analysis , Minerals/chemistry , Oxidation-Reduction , Soil Pollutants/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Weather , Zinc/chemistry , Zinc Isotopes/analysis
2.
Geobiology ; 10(6): 506-17, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22925422

ABSTRACT

In a methanogenic crude oil contaminated aquifer near Bemidji, Minnesota, the decrease in dissolved CH(4) concentrations along the groundwater flow path, along with the positive shift in δ(13) C(CH) (4) and negative shift in δ(13) C(DIC) , is indicative of microbially mediated CH(4) oxidation. Calculations of electron acceptor transport across the water table, through diffusion, recharge, and the entrapment and release of gas bubbles, suggest that these processes can account for at most 15% of the observed total reduced carbon oxidation, including CH(4) . In the anaerobic plume, the characteristic Fe(III)-reducing genus Geobacter was the most abundant of the microbial groups tested, and depletion of labile sediment iron is observed over time, confirming that reduced carbon oxidation coupled to iron reduction is an important process. Electron mass balance calculations suggest that organic carbon sources in the aquifer, BTEX and non-volatile dissolved organic carbon, are insufficient to account for the loss in sediment Fe(III), implying that CH(4) oxidation may also be related to Fe(III) reduction. The results support a hypothesis of Fe(III)-mediated CH(4) oxidation in the contaminated aquifer.


Subject(s)
Environmental Pollutants/metabolism , Groundwater/microbiology , Iron/metabolism , Methane/metabolism , Petroleum/microbiology , Anaerobiosis , Biota , Carbon/metabolism , Carbon Isotopes/metabolism , Isotope Labeling , Minnesota , Oxidation-Reduction , Real-Time Polymerase Chain Reaction
3.
Water Res ; 44(4): 1114-25, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19995665

ABSTRACT

Bacteriophages are bacterial viruses with unique characteristics that make them excellent surrogates for mammalian pathogenic viruses in environmental studies. Simple and reliable methodologies for isolation, detection, characterization and enumeration of somatic and F-specific bacteriophage are available in the literature. Limited information or methods are available for producing high-titer purified phage suspensions for studying microbial transport and survival in natural and engineered environments. This deficiency arises because most research on the production of high-titer phage suspensions was completed over half a century ago and more recent advances on these methods have not been compiled in a single publication. We present a review of the available methods and new data on the propagation, concentration and purification of two bacteriophage host systems (somatic PRD1/Salmonella thyphimurium and F-specific PR772/Escherichia coli) that are commonly utilized in laboratory and field-scale assessments of subsurface microbial transport and survival. The focus of the present study is to recommend the approach(es) that will ensure maximum bacteriophage yields while optimizing suspension purification (i.e. avoiding modification of surface charge of the phage capsids and/or inadvertent introduction of dissolved organic matter to the study system).


Subject(s)
Bacteriophage PRD1/isolation & purification , Environmental Monitoring/methods , Bacteriophage PRD1/chemistry , Bacteriophage PRD1/growth & development , Carbon/analysis , Colony Count, Microbial , Kinetics , Particle Size , Water Pollutants/analysis
4.
J Contam Hydrol ; 88(1-2): 1-22, 2006 Nov 20.
Article in English | MEDLINE | ID: mdl-16844261

ABSTRACT

Over a decade of field observations including geochemical, mineralogical and hydrological information are available on the generation of acid mine drainage from the Pistol Dam region of the P-area of Inco's tailings impoundment in Copper Cliff, Ontario. This work focuses on the integration and quantitative assessment of this data set using reactive transport modeling. The results of the reactive transport simulations are in general agreement with the field observations; however, exact agreement between the field and simulated results was not the objective of this study, and was not attained. Many factors contribute to the discrepancies between the field observations and simulation results including geochemical and hydrogeological complexities and necessary model simplifications. For example, fluctuating water levels observed at the site were averaged and described using a steady state flow system. In addition, the lack of representative thermodynamic and rate expression data contributed to the discrepancies between observations and simulation results, thus further research into the applicability of laboratory-derived thermodynamic and rate expression data to field conditions could minimize these discrepancies. Despite the discrepancies between the field observations and simulated results, integrating field observations with numerical modelling of the P-area tailings impoundment allowed for a more complete understanding of what affects the complex geochemical reactions.


Subject(s)
Mining , Sulfides/analysis , Water Movements , Geological Phenomena , Geology , Models, Theoretical , Oxidation-Reduction , Sulfides/isolation & purification , Water Pollution
5.
J Contam Hydrol ; 85(3-4): 195-211, 2006 May 30.
Article in English | MEDLINE | ID: mdl-16554107

ABSTRACT

Reactive transport modeling of a permeable reactive barrier for the treatment of mine drainage was used to integrate a comprehensive data set including pore water chemistry and solid phase data from several sampling events over a >3-year time period. The simulations consider the reduction of sulfate by the organic carbon-based treatment material and the removal of sulfate and iron by precipitation of reduced mineral phases including iron monosulfides and siderite. Additional parameters constraining the model include dissolved H2S, alkalinity and pH, as well as a suite of solid phase S-fractions identified by extractions. Influences of spatial heterogeneity necessitated the use of a 2-dimensional modeling approach. Simulating observed seasonal fluctuations and long-term changes in barrier reactivity required the use of temperature dependent rate coefficients and a multimodal Monod-type rate expression accounting for the variable reactivity of different organic carbon fractions. Simulated dissolved concentrations of SO4, Fe, H2S, alkalinity and pH, as well as solid phase accumulations of reduced sulfur phases generally compare well to observed trends over 23 months. Spatial variations, seasonal fluctuations and the time-dependent decline in reactivity were also captured. The modeling results generally confirm, and further strengthen, the existing conceptual model for the site. Overall sulfate reduction and S-accumulation rates are constrained with confidence within a factor of 1.5.


Subject(s)
Mining , Models, Theoretical , Water Pollution/prevention & control , Hydrogen-Ion Concentration , Industrial Waste/analysis , Oxidation-Reduction , Refuse Disposal/methods , Sewage/analysis , Sewage/chemistry , Sulfates/analysis , Sulfates/chemistry , Sulfides/analysis , Sulfides/chemistry
6.
J Contam Hydrol ; 83(3-4): 149-70, 2006 Feb 10.
Article in English | MEDLINE | ID: mdl-16406605

ABSTRACT

Oxidation reactions have depleted sulfide minerals in the shallow tailings and have generated sulfate- and metal-rich pore water throughout the East Tailings Management Area (ETMA) at Lynn Lake, Manitoba, Canada. Information concerning the tailings geochemistry and mineralogy suggest the sulfide oxidation processes have reached an advanced stage in the area proximal to the point of tailings discharge. In contrast, the distal tailings, or slimes area, have a higher moisture content close to the impoundment surface, thereby impeding the ingress of oxygen and limiting sulfide oxidation. Numerical modelling of sulfide oxidation indicates the maximum rate of release for sulfate, Fe, and Ni occurred shortly after tailings deposition ceased. Although the sulfide minerals have been depleted in the very shallow tailings, the modelling suggests that sulfide oxidation will continue for hundreds and possibly thousands of years. The combination of sulfide minerals, principally pyrrhotite, that is susceptible to weathering processes and the relatively dry, coarse-grained nature of the tailings have resulted in the formation of a massive-hardpan layer in the proximal area of the ETMA. Because extensive accumulations of secondary oxyhydroxides of ferric iron are already present, remediation strategies for the ETMA should focus on mitigating the release of sulfide oxidation products rather than on preventing further oxidation.


Subject(s)
Metals, Heavy/chemistry , Mining , Models, Theoretical , Sulfides/chemistry , Water Pollutants, Chemical/analysis , Water Purification , British Columbia , Fresh Water , Humans , Oxidation-Reduction
7.
Environ Sci Technol ; 36(6): 1349-56, 2002 Mar 15.
Article in English | MEDLINE | ID: mdl-11944692

ABSTRACT

Permeable reactive barriers designed to enhance bacterial sulfate reduction and metal sulfide precipitation have the potential to prevent acid mine drainage and the associated release of dissolved metals. Two column experiments were conducted using simulated mine-drainage water to assess the performance of organic carbon-based reactive mixtures under controlled groundwater flow conditions. The simulated mine drainage is typical of mine-drainage waterthat has undergone acid neutralization within aquifers. This water is near neutral in pH and contains elevated concentrations of Fe(II) and SO4. Minimum rates of SO4 removal averaged between 500 and 800 mmol d(-1) m(-3) over a 14-month period. Iron concentrations decreased from between 300 and 1200 mg/L in the influent to between <0.01 and 220 mg/L in the columns. Concentrations of Zn decreased from 0.6-1.2 mg/L in the input to between 0.01 and 0.15 mg/L in the effluent, and Ni concentrations decreased from between 0.8 and 12.8 mg/L to <0.01 mg/L. The pH increased slightly from typical input values of 5.5-6.0 to effluent values of 6.5-7.0. Alkalinity, generally <50 mg/L (as CaCO3) in the influent, increased to between 300 and 1,300 mg/L (as CaCO3) in the effluent from the columns. As a result of decreased Fe(II) concentrations and increased alkalinity, the acid-generating potential of the simulated mine-drainage water was removed, and a net acid-consuming potential was observed in the effluent water.


Subject(s)
Metals, Heavy/analysis , Mining , Water Purification/methods , Chemical Precipitation , Hydrogen-Ion Concentration , Industrial Waste , Iron/chemistry , Oxidation-Reduction , Permeability , Sulfides/chemistry , Sulfur/metabolism , Water Pollution/prevention & control
8.
J Contam Hydrol ; 52(1-4): 109-35, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11695738

ABSTRACT

A newly developed reactive transport model was used to evaluate the potential effects of mine closure on the geochemical evolution in the aquifer downgradient from a mine site. The simulations were conducted for the Königstein uranium mine located in Saxony, Germany. During decades of operation, uranium at the former mine site had been extracted by in situ acid leaching of the ore underground, while the mine was maintained in a dewatered condition. One option for decommissioning is to allow the groundwater level to rise to its natural level, flooding the mine workings. As a result, pore water containing high concentrations of dissolved metals, radionuclides, and sulfate may be released. Additional contamination may arise due to the dissolution of minerals contained in the aquifer downgradient of the mine. On the other hand, dissolved metals may be attenuated by reactions within the aquifer. The geochemical processes and interactions involved are highly non-linear and their impact on the quality of the groundwater and surface water downstream of the mine is not always intuitive. The multicomponent reactive transport model MIN3P, which can describe mineral dissolution-precipitation reactions, aqueous complexation, and oxidation-reduction reactions, is shown to be a powerful tool for investigating these processes. The predictive capabilities of the model are, however, limited by the availability of key geochemical parameters such as the presence and quantities of primary and secondary mineral phases. Under these conditions, the model can provide valuable insight by means of sensitivity analyses.


Subject(s)
Mining , Models, Theoretical , Soil Pollutants/analysis , Uranium , Water Pollutants/analysis , Forecasting , Hydrogen-Ion Concentration , Metals, Heavy/analysis , Radioactive Pollutants/analysis , Solubility , Water Movements
9.
Ground Water ; 39(3): 371-9, 2001.
Article in English | MEDLINE | ID: mdl-11341003

ABSTRACT

Reactive barriers are passive and in situ ground water treatment systems. Heterogeneities in hydraulic conductivity (K) within the aquifer-reactive barrier system will result in higher flux rates, and reduced residence times, through portions of the barrier. These spatial variations in residence time will affect the treatment capacity of the barrier. A numerical flow model was used to evaluate the effects of spatial variations in K on preferential flow through barriers. The simulations indicate that the impact of heterogeneities in K will be a function of their location and distribution; the more localized the high K zone, the greater the preferential flow. The geometry of the reactive barrier will also strongly influence flow distribution. Aquifer heterogeneities will produce greater preferential flow in thinner barriers compared to thicker barriers. If the barrier K is heterogeneous, greater preferential flow will occur in thicker barriers. The K of the barrier will affect the flow distribution; decreasing the K of the barrier can result in more even distribution of flow. Results indicate that less variable flow will be attained utilizing thicker, homogeneous barriers. The addition of homogeneous zones to thinner barriers will be effective at redistributing flow only if installed immediately adjacent to both the up- and downgradient faces of the barrier.


Subject(s)
Water Purification/instrumentation , Equipment Design , Models, Theoretical , Permeability , Water Pollution, Chemical , Water Supply
10.
J Hazard Mater ; 68(1-2): 109-24, 1999 Aug 12.
Article in English | MEDLINE | ID: mdl-10518667

ABSTRACT

A continuous hanging iron wall was installed in June, 1996, at the U. S. Coast Guard (USCG) Support Center near Elizabeth City, NC, United States, to treat overlapping plumes of chromate and chlorinated solvent compounds. The wall was emplaced using a continuous trenching machine whereby native soil and aquifer sediment was removed and the iron simultaneously emplaced in one continuous excavation and fill operation. To date, there have been seven rounds (November 1996, March 1997, June 1997, September 1997, December 1997, March 1998, and June 1998) of performance monitoring of the wall. At this time, this is the only full-scale continuous 'hanging' wall installed as a permeable reactive barrier to remediate both chlorinated solvent compounds and chromate in groundwater. Performance monitoring entails the following: sampling of 10-5 cm PVC compliance wells and 15 multi-level samplers for the following constituents: TCE, cis-dichloroethylene (c-DCE), vinyl chloride, ethane, ethene, acetylene, methane, major anions, metals, Cr(VI), Fe(II), total sulfides, dissolved H(2), Eh, pH, dissolved oxygen, specific conductance, alkalinity, and turbidity. Electrical conductivity profiles have been conducted using a Geoprobe to verify emplacement of the continuous wall as designed and to locate upgradient and downgradient wall interfaces for coring purposes. Coring has been conducted in November, 1996, in June and September, 1997, and March, 1998, to evaluate the rate of corrosion on the iron surfaces, precipitate buildup (particularly at the upgradient interface), and permeability changes due to wall emplacement. In addition to several continuous vertical cores, angled cores through the 0.6-m thick wall have been collected to capture upgradient and downgradient wall interfaces along approximate horizontal flow paths for mineralogic analyses.


Subject(s)
Fresh Water , Hydrocarbons, Chlorinated/analysis , Iron/analysis , Solvents/analysis , Water Pollutants, Chemical , Water Pollution, Chemical/prevention & control , Corrosion , Equipment Design , Equipment Failure , Evaluation Studies as Topic , Hydrocarbons, Chlorinated/chemistry , Hydrogen-Ion Concentration , Military Personnel , North Carolina , Permeability , Rheology , Solvents/chemistry , Time Factors , Water Movements , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL