Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 374(6570): 968-972, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34709937

ABSTRACT

Jupiter's atmosphere has a system of zones and belts punctuated by small and large vortices, the largest being the Great Red Spot. How these features change with depth is unknown, with theories of their structure ranging from shallow meteorological features to surface expressions of deep-seated convection. We present observations of atmospheric vortices using the Juno spacecraft's Microwave Radiometer. We found vortex roots that extend deeper than the altitude at which water is expected to condense, and we identified density inversion layers. Our results constrain the three-dimensional structure of Jupiter's vortices and their extension below the clouds.

2.
Nature ; 555(7695): 223-226, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29516995

ABSTRACT

The depth to which Jupiter's observed east-west jet streams extend has been a long-standing question. Resolving this puzzle has been a primary goal for the Juno spacecraft, which has been in orbit around the gas giant since July 2016. Juno's gravitational measurements have revealed that Jupiter's gravitational field is north-south asymmetric, which is a signature of the planet's atmospheric and interior flows. Here we report that the measured odd gravitational harmonics J3, J5, J7 and J9 indicate that the observed jet streams, as they appear at the cloud level, extend down to depths of thousands of kilometres beneath the cloud level, probably to the region of magnetic dissipation at a depth of about 3,000 kilometres. By inverting the measured gravity values into a wind field, we calculate the most likely vertical profile of the deep atmospheric and interior flow, and the latitudinal dependence of its depth. Furthermore, the even gravity harmonics J8 and J10 resulting from this flow profile also match the measurements, when taking into account the contribution of the interior structure. These results indicate that the mass of the dynamical atmosphere is about one per cent of Jupiter's total mass.

3.
Science ; 356(6340): 821-825, 2017 05 26.
Article in English | MEDLINE | ID: mdl-28546206

ABSTRACT

On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter's poles show a chaotic scene, unlike Saturn's poles. Microwave sounding reveals weather features at pressures deeper than 100 bars, dominated by an ammonia-rich, narrow low-latitude plume resembling a deeper, wider version of Earth's Hadley cell. Near-infrared mapping reveals the relative humidity within prominent downwelling regions. Juno's measured gravity field differs substantially from the last available estimate and is one order of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter's core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content.

4.
Nature ; 405(6782): 63-5, 2000 May 04.
Article in English | MEDLINE | ID: mdl-10811217

ABSTRACT

Since the work of William Gilbert in 1600 (ref. 1), it has been widely believed that the Earth's magnetic field, when suitably time-averaged, is that of a magnetic dipole positioned at the Earth's centre and aligned with the rotational axis. This 'geocentric axial dipole' (GAD) hypothesis has been the central model for the study of the Earth's magnetic field--it underpins almost all interpretations of palaeomagnetic data, whether for studies of palaeomagnetic secular variation, for plate tectonic reconstructions, or for studies of palaeoclimate. Although the GAD hypothesis appears to provide a good description of the Earth's magnetic field over at least the past 100 Myr (ref. 2), it is difficult to test the hypothesis for earlier periods, and there is some evidence that a more complicated model is required for the period before 250 Myr ago. Kent and Smethurst suggested that this additional complexity might be because the inner core would have been smaller at that time. Here I use a numerical geodynamo model and find that reducing the size of the inner core does not significantly change the character of the magnetic field. I also consider an alternative process that could lead to the breakdown of the GAD hypothesis on this timescale, the evolution of heat-flux variations at the core-mantle boundary, induced by mantle convection. I find that a simple pattern of heat-flux variations at the core-mantle boundary, which is plausible for times before the Mesozoic era, results in a strong octupolar contribution to the field, consistent with previous findings.

SELECTION OF CITATIONS
SEARCH DETAIL
...