Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 312: 111032, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34620436

ABSTRACT

Aphanomyces euteiches is an oomycete pathogen that causes the pea root rot. We investigated the potential role of early belowground defense in pea (susceptible plant) and faba bean (tolerant plant) at three days after inoculation. Pea and faba bean were inoculated with A. euteiches zoospores. Root colonization was examined. Root exudates from pea and faba bean were harvested and their impact on A. euteiches development were assessed by using in vitro assays. A. euteiches root colonization and the influence of the oomycete inoculation on specialized metabolites patterns and arabinogalactan protein (AGP) concentration of root exudates were also determined. In faba bean root, A. euteiches colonization was very low as compared with that of pea. Whereas infected pea root exudates have a positive chemotaxis index (CI) on zoospores, faba bean exudate CI was negative suggesting a repellent effect. While furanoacetylenic compounds were only detected in faba bean exudates, AGP concentration was specifically increased in pea.This work showed that early in the course of infection, host susceptibility to A. euteiches is involved via a plant-species specific root exudation opening new perspectives in pea root rot disease management.


Subject(s)
Aphanomyces/drug effects , Aphanomyces/growth & development , Pisum sativum/microbiology , Plant Exudates/pharmacology , Plant Roots/microbiology , Vicia faba/chemistry , Vicia faba/microbiology , Virulence/drug effects , Crops, Agricultural/microbiology , Host-Pathogen Interactions/drug effects , Plant Immunity/drug effects
2.
Plants (Basel) ; 10(1)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467743

ABSTRACT

In the last decade, the soil borne fungal pathogen Verticillium dahliae has had an increasingly strong effect on fiber flax (Linum usitatissimum L.), thus causing important yield losses in Normandy, France. Race-specific resistance against V. dahliae race 1 is determined by tomato Ve1, a leucine-rich repeat (LRR) receptor-like protein (RLP). Furthermore, homologous proteins have been found in various plant families. Herein, four homologs of tomato Ve1 were identified in the flax proteome database. The selected proteins were named LuVe11, LuVe12, LuVe13 and LuVe14 and were compared to other Ve1. Sequence alignments and phylogenic analysis were conducted and detected a high similarity in the content of amino acids and that of the Verticillium spp. race 1 resistance protein cluster. Annotations on the primary structure of these homologs reveal several features of tomato Ve1, including numerous copies of a 28 amino acids consensus motif [XXIXNLXXLXXLXLSXNXLSGXIP] in the LRR domain. An in vivo assay was performed using V. dahliae race 1 on susceptible and tolerant fiber flax cultivars. Despite the presence of homologous genes and the stronger expression of LuVe11 compared to controls, both cultivars exhibited symptoms and the pathogen was observed within the stem. Amino acid substitutions within the segments of the LRR domain could likely affect the ligand binding and thus the race-specific resistance. The results of this study indicate that complex approaches including pathogenicity tests, microscopic observations and gene expression should be implemented for assessing race-specific resistance mediated by Ve1 within the large collection of flax genotypes.

3.
Plant Dis ; 102(12): 2421-2429, 2018 12.
Article in English | MEDLINE | ID: mdl-30281419

ABSTRACT

Fiber flax (Linum usitatissimum L.), an important crop in Normandy (France), is increasingly affected by Verticillium wilt caused by the soilborne fungus Verticillium dahliae. This disease leads to nonnegligible yield losses and depreciated fibers that are consequently difficult to upgrade. Verticillium wilt is a major threat to a broad range of agriculture. In this study, susceptible fiber flax cultivar Adélie was infected by VdLu01 (isolated from fiber flax, this study) or green fluorescent protein-tagged VdLs17 (transformed and provided by the department of Plant Pathology, University of California, Davis). Between 3 and 4 weeks postinoculation, wilting symptoms on leaves were first observed, with acropetal growth during the following weeks. Pathogen development was tracked by confocal laser-scanning microscopy during the asymptomatic and symptomatic stages. First, conidia germination led to the development of hyphae on root epidermis; more particularly, on the zone of cell differentiation and around emerging lateral roots, while the zone of cell division and the root tip were free of the pathogen. At 3 days postinoculation, the zone of cell differentiation and lateral roots were embedded into a fungal mass. Swelling structures such as appressoria were observed at 1 week postinoculation. At 2 weeks postinoculation and onward, the pathogen had colonized xylem vessels in roots, followed by the stem and, finally, leaves during the symptomatic stage. Additionally, observations of infected plants after retting in the field revealed microsclerotia embedded inside the bast fiber bundle, thus potentially contributing to weakening of fiber. All of these results provide a global account of V. dahliae development when infecting fiber flax.


Subject(s)
Flax/microbiology , Host-Pathogen Interactions , Plant Diseases/microbiology , Verticillium/growth & development , France , Green Fluorescent Proteins , Hyphae , Plant Leaves/microbiology , Plant Roots/microbiology , Plant Stems/microbiology , Verticillium/cytology , Verticillium/genetics , Xylem/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...