Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Regul Toxicol Pharmacol ; 150: 105649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782234

ABSTRACT

Permitted Daily Exposure Limits (PDEs) are set for Active Pharmaceutical Ingredients (APIs) to control cross-contamination when manufacturing medicinal products in shared facilities. With the lack of official PDE lists for pharmaceuticals, PDEs have to be set by each company separately. Although general rules and guidelines for the setting of PDEs exist, inter-company variations in the setting of PDEs occur and are considered acceptable within a certain range. To evaluate the robustness of the PDE approach between different pharmaceutical companies, data on PDE setting of five marketed APIs (amlodipine, hydrochlorothiazide, metformin, morphine, and omeprazole) were collected and compared. Findings show that the variability between PDE values is within acceptable ranges (below 10-fold) for all compounds, with the highest difference for morphine due to different Point of Departures (PODs) and Adjustment Factors (AFs). Factors of PDE variability identified and further discussed are: (1) availability of data, (2) selection of POD, (3) assignment of AFs, (4) route-to-route extrapolation, and (5) expert judgement and differences in company policies. We conclude that the investigated PDE methods and calculations are robust and scientifically defensible. Additionally, we provide further recommendations to harmonize PDE calculation approaches across the pharmaceutical industry.


Subject(s)
Drug Industry , Humans , Drug Industry/standards , Pharmaceutical Preparations/standards , Pharmaceutical Preparations/analysis , Risk Assessment , Drug Contamination/prevention & control , Occupational Exposure/standards , Bulk Drugs
2.
J Appl Toxicol ; 43(8): 1183-1200, 2023 08.
Article in English | MEDLINE | ID: mdl-36840679

ABSTRACT

N-Nitrosamines are potent carcinogens and considered non-threshold carcinogens in various regulatory domains. However, recent data indicate the existence of a threshold for genotoxicity, which can be adequately demonstrated. This aspect has a critical impact on selecting the methodology that is applied to derive occupational exposure limits (OELs). OELs are used to protect workers potentially exposed to various chemicals by supporting the selection of appropriate control measures and ultimately reducing the risk of occupational cancer. Occupational exposures to nitrosamines occur during manufacturing processes, mainly in the rubber and chemical industry. The present study derives OELs for inhaled N-nitrosamines, employing the benchmark dose (BMD) approach if data are adequate and read-across for nitrosamines without adequate data. Additionally, benchmark dose lower confidence limit (BMDL) is preferred and more suitable point-of-departure (PoD) to calculate human health guidance values, including OEL. The lowest OEL (0.2 µg/m3 ) was derived for nitrosodiethylamine (NDEA), and nitrosopiperidine (NPIP) (OEL = 0.2 µg/m3 ), followed by nitrosopyrrolidine (NPYR) (0.4 µg/m3 ), nitrosodimethylamine (NDMA), nitrosodimethylamine (NMEA), and nitrosodipropylamine (NDPA) (0.5 µg/m3 ), nitrosomorpholine (NMOR) (OEL = 1 µg/m3 ), and nitrosodibutylamine (NDBA) (OEL = 2.5 µg/m3 ). Limits based on "non-threshold" TD50 slope calculation were within a 10-fold range. These proposed OELs do not consider skin absorption of nitrosamines, which is also a possible route of entry into the body, nor oral or other environmental sources. Furthermore, we recommend setting a limit for total nitrosamines based on the occupational exposure scenario and potency of components.


Subject(s)
Nitrosamines , Occupational Exposure , Humans , Carcinogens/toxicity , Dimethylnitrosamine , Benchmarking , Nitrosamines/toxicity , Diethylnitrosamine , Occupational Exposure/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...