Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 291: 128-45, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25701125

ABSTRACT

Repeated stress can elicit symptoms of depression and anxiety. The amygdala is a significant contributor to the expression of emotion and the basolateral amygdala (BLA) is a major target for the effects of stress on emotion. The adolescent time period may be particularly susceptible to the effects of stress on emotion. While repeated stress has been demonstrated to modify the morphology of BLA neurons in adult rats, little is known about its effects on BLA neurons during adolescence. This study tests the effects of repeated stress during adolescence on BLA neuronal morphology, and whether these are similar to the effects of stress during adulthood. The BLA includes the basal (BA) and lateral (LAT) nuclei, which are differentially responsive to stress in adults. Therefore, effects of stress during adolescence were compared between the BA and LAT nuclei. Morphological features of reconstructed BLA neurons were examined using Golgi-Cox-stained tissue from control or repeated restraint stress-exposed rats. We found subtle dendritic growth coupled with loss of spines after repeated stress during adolescence. The magnitude and dendritic location of these differences varied between the BA and LAT nuclei in strong contrast to the stress-induced increases in spine number seen in adults. These results demonstrate that repeated stress during adolescence has markedly different effects on BLA neuronal morphology, and the extent of these changes is BLA nucleus-dependent. Moreover, altered neuroanatomy was associated with age-dependent effects of repeated stress on generalization of fear, and may point to the necessity for different approaches to target stress-induced changes in adolescents.


Subject(s)
Basolateral Nuclear Complex/growth & development , Basolateral Nuclear Complex/pathology , Neurons/pathology , Stress, Psychological/pathology , Animals , Cell Size , Dendritic Spines/pathology , Fear , Freezing Reaction, Cataleptic , Generalization, Psychological , Image Processing, Computer-Assisted , Male , Photomicrography , Rats, Sprague-Dawley , Restraint, Physical
2.
Neuroscience ; 246: 230-42, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23660193

ABSTRACT

Chronic stress exacerbates and can induce symptoms of depression and anxiety disorders. Chronic stress causes amygdala hyperactivity, which may contribute to these detrimental effects. One potential mechanism for amygdala hyperactivity is an increase of excitatory drive after stress. Excitatory inputs to the amygdala predominantly synapse upon dendritic spines, and repeated stress has been demonstrated to increase dendritic spines in the basolateral amygdala (BLA). However, the BLA is comprised of several nuclei, including the lateral nucleus (LAT) and the basal nucleus (BA), which exert functionally distinct roles in amygdala-dependent behaviors. Furthermore, while an increase of dendritic spines can impart significant functional ramifications, a shift of spine distribution can also exert significant impact. However, differences in the effects of repeated stress on LAT and BA have not been examined, nor differential effects on spine distribution. This study examined the effects of repeated restraint stress on dendritic structure of principal neurons from the LAT and BA in Golgi-stained tissue. This study found that repeated stress increased spine number in LAT and BA, but in very distinct patterns, with proximal increases in LAT neurons and non-proximal increases in BA neurons. Furthermore, repeated stress increased dendritic length in the BA, but not the LAT, leading to a global change of spine density in BA, but a focal change in LAT. These distinct effects of repeated stress in the LAT and BA may exert significant functional effects on fear behavior, and may underlie differences in the effects of repeated stress on acquisition, contextual modulation and extinction of fear behavior.


Subject(s)
Amygdala/pathology , Dendritic Spines/pathology , Neurons/pathology , Stress, Psychological/pathology , Stress, Psychological/psychology , Animals , Male , Rats , Rats, Sprague-Dawley , Restraint, Physical , Time Factors
3.
Parkinsons Dis ; 2011: 658083, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21209719

ABSTRACT

Most cases of Parkinson's disease (PD) are sporadic. When choosing an animal model for idiopathic PD, one must consider the extent of similarity or divergence between the physiology, anatomy, behavior, and regulation of gene expression between humans and the animal. Rodents and nonhuman primates are used most frequently in PD research because when a Parkinsonian state is induced, they mimic many aspects of idiopathic PD. These models have been useful in our understanding of the etiology of the disease and provide a means for testing new treatments. However, the current animal models often fall short in replicating the true pathophysiology occurring in idiopathic PD, and thus results from animal models often do not translate to the clinic. In this paper we will explain the limitations of animal models of PD and why their use is inappropriate for the study of some aspects of PD.

SELECTION OF CITATIONS
SEARCH DETAIL
...