Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 25(5): 1-10, 2020 05.
Article in English | MEDLINE | ID: mdl-32385975

ABSTRACT

SIGNIFICANCE: Pulmonary vein isolation with catheter-based radiofrequency ablation (RFA) is carried out frequently to treat atrial fibrillation. However, RFA lesion creation is only guided by indirect information (e.g., temperature, impedance, and contact force), which may result in poor lesion quality (e.g., nontransmural) and can lead to reoccurrence or complications. AIM: The feasibility of guiding intracardiac RFA with an integrated polarization-sensitive optical coherence tomography (PSOCT)-RFA catheter in the right atria (RA) of living swine is demonstrated. APPROACH: In total, 12 sparse lesions were created in the RA of three living swine using an integrated PSOCT-RFA catheter with standard ablation protocol. PSOCT images were displayed in real time to guide catheter-tissue apposition. After experiments, post-processed PSOCT images were analyzed to assess lesion quality and were compared with triphenyltetrazolium chloride (TTC) lesion quality analysis. RESULTS: Five successful lesions identified with PSOCT images were all confirmed by TTC analysis. In two ablations, PSOCT imaging detected gas bubble formation, indicating overtreatment. Unsuccessful lesions observed with PSOCT imaging were confirmed by TTC analysis. CONCLUSIONS: The results demonstrate that the PSOCT-RFA catheter provides real-time feedback to guide catheter-tissue apposition, monitor lesion quality, and possibly help avoid complications due to overtreatment, which may enable more effective and safer RFA treatment.


Subject(s)
Catheter Ablation , Pulmonary Veins , Radiofrequency Ablation , Animals , Heart Atria/diagnostic imaging , Heart Atria/surgery , Swine , Tomography, Optical Coherence
2.
Magn Reson Med ; 71(6): 2243-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23900921

ABSTRACT

PURPOSE: A prototype wireless guidance device using single sideband amplitude modulation (SSB) is presented for a 1.5T magnetic resonance imaging system. METHODS: The device contained three fiducial markers each mounted to an independent receiver coil equipped with wireless SSB technology. Acquiring orthogonal projections of these markers determined the position and orientation of the device, which was used to define the scan plane for a subsequent image acquisition. Device localization and scan plane update required approximately 30 ms, so it could be interleaved with high temporal resolution imaging. Since the wireless device is used for localization and does not require full imaging capability, the design of the SSB wireless system was simplified by allowing an asynchronous clock between the transmitter and receiver. RESULTS: When coupled to a high readout bandwidth, the error caused by the lack of a shared frequency reference was quantified to be less than one pixel (0.78 mm) in the projection acquisitions. Image guidance with the prototype was demonstrated with a phantom where a needle was successfully guided to a target and contrast was delivered. CONCLUSION: The feasibility of active tracking with a wireless detector array is demonstrated. Wireless arrays could be incorporated into devices to assist in image-guided procedures.


Subject(s)
Fiducial Markers , Magnetic Resonance Imaging/instrumentation , Wireless Technology , Equipment Design , Feasibility Studies , Phantoms, Imaging
3.
Magn Reson Med ; 70(6): 1775-86, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23413242

ABSTRACT

PURPOSE: Single sideband amplitude modulation (SSB) is an appealing platform for highly parallel wireless MRI detector arrays because the spacing between channels is ideally limited only by the MRI signal bandwidth. However this assumes that no other sources of interference are present outside that bandwidth. This work investigates the practical interference between multiple SSB-encoded MRI signals. METHODS: Noise from coil preamplifiers and carrier bleed-through are identified as sources of interference. Two different SSB systems were designed for 1.5 T with different noise filtering properties. We show how the differences between the filtered noise profiles impact the received MR signal's dynamic range (DRsig ) and image signal-to-noise ratio through simulation, bench measurements, and phantom imaging experiments. RESULTS: When operating individually in the MR scanner, both SSB systems were shown to minimally impact the original DRsig and signal-to-noise ratio. Conversely, when all eight channels were operating simultaneously, an average signal-to-noise ratio loss was observed to be 12% in the one system, while a second system with more complex filtering was able to achieve a 3% loss in signal-to-noise ratio. CONCLUSION: Successful wireless transmission of multiple SSB-encoded MRI signals is possible as long as channel interference is properly managed through design and simulation.


Subject(s)
Artifacts , Image Enhancement/instrumentation , Image Enhancement/methods , Magnetic Resonance Imaging/instrumentation , Magnetics/instrumentation , Transducers , Wireless Technology/instrumentation , Amplifiers, Electronic , Equipment Design , Equipment Failure Analysis/methods , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted/instrumentation , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...