Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(12): 127401, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38579223

ABSTRACT

Nonreciprocal interactions between microscopic constituents can profoundly shape the large-scale properties of complex systems. Here, we investigate the effects of nonreciprocity in the context of theoretical ecology by analyzing a generalization of MacArthur's consumer-resource model with asymmetric interactions between species and resources. Using a mixture of analytic cavity calculations and numerical simulations, we show that such ecosystems generically undergo a phase transition to chaotic dynamics as the amount of nonreciprocity is increased. We analytically construct the phase diagram for this model and show that the emergence of chaos is controlled by a single quantity: the ratio of surviving species to surviving resources. We also numerically calculate the Lyapunov exponents in the chaotic phase and carefully analyze finite-size effects. Our findings show how nonreciprocal interactions can give rise to complex and unpredictable dynamical behaviors even in the simplest ecological consumer-resource models.

2.
ArXiv ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38420139

ABSTRACT

Non-reciprocal interactions between microscopic constituents can profoundly shape the large-scale properties of complex systems. Here, we investigate the effects of non-reciprocity in the context of theoretical ecology by analyzing a generalization of MacArthur's consumer-resource model with asymmetric interactions between species and resources. Using a mixture of analytic cavity calculations and numerical simulations, we show that such ecosystems generically undergo a phase transition to chaotic dynamics as the amount of non-reciprocity is increased. We analytically construct the phase diagram for this model and show that the emergence of chaos is controlled by a single quantity: the ratio of surviving species to surviving resources. We also numerically calculate the Lyapunov exponents in the chaotic phase and carefully analyze finite-size effects. Our findings show how non-reciprocal interactions can give rise to complex and unpredictable dynamical behaviors even in the simplest ecological consumer-resource models.

3.
Phys Rev E ; 108(4-1): 044409, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978666

ABSTRACT

A fundamental problem in ecology is to understand how competition shapes biodiversity and species coexistence. Historically, one important approach for addressing this question has been to analyze consumer resource models using geometric arguments. This has led to broadly applicable principles such as Tilman's R^{*} and species coexistence cones. Here, we extend these arguments by constructing a geometric framework for understanding species coexistence based on convex polytopes in the space of consumer preferences. We show how the geometry of consumer preferences can be used to predict species which may coexist and enumerate ecologically stable steady states and transitions between them. Collectively, these results provide a framework for understanding the role of species traits within niche theory.


Subject(s)
Biodiversity , Ecosystem , Phenotype , Models, Biological
4.
ArXiv ; 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37693181

ABSTRACT

Non-reciprocal interactions between microscopic constituents can profoundly shape the large-scale properties of complex systems. Here, we investigate the effects of non-reciprocity in the context of theoretical ecology by analyzing a generalization of MacArthur's consumer-resource model with asymmetric interactions between species and resources. Using a mixture of analytic cavity calculations and numerical simulations, we show that such ecosystems generically undergo a phase transition to chaotic dynamics as the amount of non-reciprocity is increased. We analytically construct the phase diagram for this model and show that the emergence of chaos is controlled by a single quantity: the ratio of surviving species to surviving resources. We also numerically calculate the Lyapunov exponents in the chaotic phase and carefully analyze finite-size effects. Our findings show how non-reciprocal interactions can give rise to complex and unpredictable dynamical behaviors even in the simplest ecological consumer-resource models.

5.
bioRxiv ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131730

ABSTRACT

A fundamental problem in ecology is to understand how competition shapes biodiversity and species coexistence. Historically, one important approach for addressing this question has been to analyze Consumer Resource Models (CRMs) using geometric arguments. This has led to broadly applicable principles such as Tilman's R* and species coexistence cones. Here, we extend these arguments by constructing a novel geometric framework for understanding species coexistence based on convex polytopes in the space of consumer preferences. We show how the geometry of consumer preferences can be used to predict species coexistence and enumerate ecologically-stable steady states and transitions between them. Collectively, these results constitute a qualitatively new way of understanding the role of species traits in shaping ecosystems within niche theory.

6.
ArXiv ; 2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37131883

ABSTRACT

A fundamental problem in ecology is to understand how competition shapes biodiversity and species coexistence. Historically, one important approach for addressing this question has been to analyze consumer resource models using geometric arguments. This has led to broadly applicable principles such as Tilman's R* and species coexistence cones. Here, we extend these arguments by constructing a novel geometric framework for understanding species coexistence based on convex polytopes in the space of consumer preferences. We show how the geometry of consumer preferences can be used to predict species which may coexist and enumerate ecologically-stable steady states and transitions between them. Collectively, these results provide a framework for understanding the role of species traits within niche theory.

7.
JACS Au ; 1(8): 1187-1197, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34467357

ABSTRACT

Substrate channeling, where an intermediate in a multistep reaction is directed toward a reaction center rather than freely diffusing, offers several advantages when employed in catalytic cascades. Here we present a fusion enzyme comprised of an alcohol and aldehyde dehydrogenase, that is computationally designed to facilitate electrostatic substrate channeling using a cationic linker bridging the two structures. Rosetta protein folding software was utilized to determine an optimal linker placement, added to the truncated termini of the proteins, which is as close as possible to the active sites of the enzymes without disrupting critical catalytic residues. With improvements in stability, product selectivity (90%), and catalyst turnover frequency, representing 500-fold increased activity compared to the unbound enzymes and nearly 140-fold for a neutral-linked fusion enzyme, this design strategy holds promise for making other multistep catalytic processes more sustainable and efficient.

8.
Phys Rev Lett ; 126(14): 141802, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33891466

ABSTRACT

We report the results of an experimental search for ultralight axionlike dark matter in the mass range 162-166 neV. The detection scheme of our Cosmic Axion Spin Precession Experiment is based on a precision measurement of ^{207}Pb solid-state nuclear magnetic resonance in a polarized ferroelectric crystal. Axionlike dark matter can exert an oscillating torque on ^{207}Pb nuclear spins via the electric dipole moment coupling g_{d} or via the gradient coupling g_{aNN}. We calibrate the detector and characterize the excitation spectrum and relaxation parameters of the nuclear spin ensemble with pulsed magnetic resonance measurements in a 4.4 T magnetic field. We sweep the magnetic field near this value and search for axionlike dark matter with Compton frequency within a 1 MHz band centered at 39.65 MHz. Our measurements place the upper bounds |g_{d}|<9.5×10^{-4} GeV^{-2} and |g_{aNN}|<2.8×10^{-1} GeV^{-1} (95% confidence level) in this frequency range. The constraint on g_{d} corresponds to an upper bound of 1.0×10^{-21} e cm on the amplitude of oscillations of the neutron electric dipole moment and 4.3×10^{-6} on the amplitude of oscillations of CP-violating θ parameter of quantum chromodynamics. Our results demonstrate the feasibility of using solid-state nuclear magnetic resonance to search for axionlike dark matter in the neV mass range.

SELECTION OF CITATIONS
SEARCH DETAIL
...