Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
2.
ACS Pharmacol Transl Sci ; 6(1): 22-39, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36659961

ABSTRACT

Bone marrow skeletal stem cells (SSCs) secrete many cytokines including stromal derived factor-1 or CXCL12, which influences cell proliferation, migration, and differentiation. All CXCL12 splice variants are rapidly truncated on their N-terminus by dipeptidyl peptidase 4 (DPP4). This includes the common variant CXCL12 alpha (1-68) releasing a much less studied metabolite CXCL12(3-68). Here, we found that CXCL12(3-68) significantly inhibited SSC osteogenic differentiation and RAW-264.7 cell osteoclastogenic differentiation and induced a senescent phenotype in SSCs. Importantly, pre-incubation of SSCs with CXCL12(3-68) significantly diminished their ability to migrate toward CXCL12(1-68) in transwell migration assays. Using a high-throughput G-protein-coupled receptor (GPCR) screen (GPCRome) and bioluminescent resonance energy transfer molecular interaction assays, we revealed that CXCL12(3-68) acts via the atypical cytokine receptor 3-mediated ß-arrestin recruitment and as a competitive antagonist to CXCR4-mediated signaling. Finally, a reverse phase protein array assay revealed that DPP4-cleaved CXCL12 possesses a different downstream signaling profile from that of intact CXCL12 or controls. The data presented herein provides insights into regulation of CXCL12 signaling. Importantly, it demonstrates that DPP4 proteolysis of CXCL12 generates a metabolite with significantly different and previously overlooked bioactivity that helps explain discrepancies in the literature. This also contributes to an understanding of the molecular mechanisms of osteoporosis and bone fracture repair and could potentially significantly affect the interpretation of experimental outcomes with clinical consequences in other fields where CXCL12 is vital, including cancer biology, immunology, cardiovascular biology, neurobiology, and associated pathologies.

3.
Pharmacol Res Perspect ; 10(5): e01014, 2022 10.
Article in English | MEDLINE | ID: mdl-36210650

ABSTRACT

The American Society for Pharmacology and Experimental Therapeutics (ASPET) held its annual meeting at the Experimental Biology 2022 conference in Philadelphia, PA on April 2-5, 2022. The authors provide a synopsis and discussion of each of the four sessions presented at the meeting under the ASPET Division for Pharmacology Education (DPE).


Subject(s)
Pharmacology , Societies, Medical , Humans , United States
4.
Pharmacol Res Perspect ; 9(3): e00762, 2021 05.
Article in English | MEDLINE | ID: mdl-33974344

ABSTRACT

Expectations for physicians are rapidly changing, as is the environment in which they will practice. In response, preclerkship medical education curricula are adapting to meet these demands, often by reducing the time for foundational sciences. This descriptive study compares preclerkship pharmacology education curricular practices from seven allopathic medical schools across the United States. We compare factors and practices that affect how pharmacology is integrated into the undergraduate medical education curriculum, including teaching techniques, resources, time allocated to pharmacology teaching, and assessment strategies. We use data from seven medical schools in the United States, along with results from a literature survey, to inform the strengths and weaknesses of various approaches and to raise important questions that can guide future research regarding integration of foundational sciences in medical school and health professions' curricula. In this comparative study, we found that there is significant heterogeneity in the number of hours dedicated to pharmacology in the preclerkship curriculum, whereas there was concordance in the use of active learning pedagogies for content delivery. Applying the ICAP (Interactive, Constructive, Active, Passive) Framework for cognitive engagement, our data showed that pharmacology was presented using more highly engaging pedagogies during sessions that are integrated with other foundational sciences. These findings can serve as a model that can be applied beyond pharmacology to other foundational sciences such as genetics, pathology, microbiology, biochemistry, etc.


Subject(s)
Curriculum , Education, Medical, Undergraduate , Pharmacology, Clinical/education , Schools, Medical , United States
5.
Pharmacol Res Perspect ; 9(3): e00773, 2021 05.
Article in English | MEDLINE | ID: mdl-33974347

ABSTRACT

A grounded knowledge of pharmacology is essential for healthcare providers to improve the quality of patients' lives, avoid medical errors, and circumvent potentially dangerous drug-drug interactions. One of the greatest tools to achieve this foundational knowledge of pharmacology is the dedicated pharmacology educators who teach in health sciences programs. Too often, the pharmacology educators responsible for teaching this material are left siloed at their own institutions with little room for dialog and collaboration. As scientists, we know that it is through dialog and collaboration that ideas grow, are refined, and improve. More collaborative work is needed to identify and describe best practices for pharmacology education in health sciences programs. While evidence-based, outcomes-focused studies are the optimum standard for this work, there is also a place for descriptive studies and innovative reports.


Subject(s)
Health Personnel/education , Interdisciplinary Placement , Pharmacology, Clinical/education , Curriculum , Humans
6.
Carcinogenesis ; 40(12): 1504-1513, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31215992

ABSTRACT

Prostate cancer (PCa) is a leading cause of cancer death among men, with greater prevalence of the disease among the African American population in the USA. Activator of G-protein signaling 3 (AGS3/G-protein signaling modulator 1) was shown to be overexpressed in prostate adenocarcinoma relative to the prostate gland. In this study, we investigated the correlation between AGS3 overexpression and PCa malignancy. Immunoblotting analysis and real-time quantitative-PCR showed increase in AGS3 expression in the metastatic cell lines LNCaP (~3-fold), MDA PCa 2b (~2-fold), DU 145 (~2-fold) and TRAMP-C1 (~20-fold) but not in PC3 (~1-fold), relative to control RWPE-1. Overexpression of AGS3 in PC3, LNCaP and MDA PCa 2b enhanced tumor growth. AGS3 contains seven tetratricopeptide repeats (TPR) and four G-protein regulatory (GPR) motifs. Overexpression of the TPR or the GPR motifs in PC3 cells had no effect in tumor growth. Depletion of AGS3 in the TRAMP-C1 cells (TRAMP-C1-AGS3-/-) decreased cell proliferation and delayed wound healing and tumor growth in both C57BL/6 (~3-fold) and nude mice xenografts, relative to control TRAMP-C1 cells. TRAMP-C1-AGS3-/- tumors also exhibited a marked increase (~5-fold) in both extracellular signal-regulated kinase (ERK) 1/2 and P38 mitogen-activated protein kinase (MAPK) activation, which correlated with a significant increase (~3-fold) in androgen receptor (AR) expression, relative to TRAMP-C1 xenografts. Interestingly, overexpression of AGS3 in TRAMP-C1-AGS3-/- cells inhibited ERK activation and AR overexpression as compared with control TRAMP-C1 cells. Taken together, the data indicate that the effect of AGS3 in prostate cancer development and progression is probably mediated via a MAPK/AR-dependent pathway.


Subject(s)
Carcinogenesis/metabolism , Guanine Nucleotide Dissociation Inhibitors/metabolism , Prostatic Neoplasms/pathology , Animals , Cell Line, Tumor , Disease Progression , Heterografts , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Prostatic Neoplasms/metabolism , Signal Transduction/physiology
7.
J Immunol ; 202(5): 1510-1520, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30683698

ABSTRACT

Macrophages exist as innate immune subsets that exhibit phenotypic heterogeneity and functional plasticity. Their phenotypes are dictated by inputs from the tissue microenvironment. G-protein-coupled receptors are essential in transducing signals from the microenvironment, and heterotrimeric Gα signaling links these receptors to downstream effectors. Several Gαi-coupled G-protein-coupled receptors have been implicated in macrophage polarization. In this study, we use genetically modified mice to investigate the role of Gαi2 on inflammasome activity and macrophage polarization. We report that Gαi2 in murine bone marrow-derived macrophages (BMDMs) regulates IL-1ß release after activation of the NLRP3, AIM2, and NLRC4 inflammasomes. We show this regulation stems from the biased polarity of Gαi2 deficient (Gnai2 -/-) and RGS-insensitive Gαi2 (Gnai2 G184S/G184S) BMDMs. We determined that although Gnai2 G184S/G184S BMDMs (excess Gαi2 signaling) have a tendency toward classically activated proinflammatory (M1) phenotype, Gnai2-/- BMDMs (Gαi2 deficient) are biased toward alternatively activated anti-inflammatory (M2) phenotype. Finally, we find that Gαi2-deficient macrophages have increased Akt activation and IFN-ß production but defects in ERK1/2 and STAT3 activation after LPS stimulation. Gαi2-deficient macrophages also exhibit increased STAT6 activation after IL-4 stimulation. In summary, our data indicates that excess Gαi2 signaling promotes an M1 macrophage phenotype, whereas Gαi2 signaling deficiency promotes an M2 phenotype. Understanding Gαi2-mediated effects on macrophage polarization may bring to light insights regarding disease pathogenesis and the reprogramming of macrophages for the development of novel therapeutics.


Subject(s)
Cytokines/biosynthesis , GTP-Binding Protein alpha Subunit, Gi2/immunology , Inflammasomes/immunology , Macrophages/immunology , Signal Transduction/immunology , Animals , Cells, Cultured , GTP-Binding Protein alpha Subunit, Gi2/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype
8.
J Pharmacol Exp Ther ; 360(3): 424-433, 2017 03.
Article in English | MEDLINE | ID: mdl-28062526

ABSTRACT

Activator of G-protein signaling 4 (AGS4)/G-protein signaling modulator 3 (Gpsm3) contains three G-protein regulatory (GPR) motifs, each of which can bind Gαi-GDP free of Gßγ We previously demonstrated that the AGS4-Gαi interaction is regulated by seven transmembrane-spanning receptors (7-TMR), which may reflect direct coupling of the GPR-Gαi module to the receptor analogous to canonical Gαßγ heterotrimer. We have demonstrated that the AGS4-Gαi complex is regulated by chemokine receptors in an agonist-dependent manner that is receptor-proximal. As an initial approach to investigate the functional role(s) of this regulated interaction in vivo, we analyzed leukocytes, in which AGS4/Gpsm3 is predominantly expressed, from AGS4/Gpsm3-null mice. Loss of AGS4/Gpsm3 resulted in mild but significant neutropenia and leukocytosis. Dendritic cells, T lymphocytes, and neutrophils from AGS4/Gpsm3-null mice also exhibited significant defects in chemoattractant-directed chemotaxis and extracellular signal-regulated kinase activation. An in vivo peritonitis model revealed a dramatic reduction in the ability of AGS4/Gpsm3-null neutrophils to migrate to primary sites of inflammation. Taken together, these data suggest that AGS4/Gpsm3 is required for proper chemokine signal processing in leukocytes and provide further evidence for the importance of the GPR-Gαi module in the regulation of leukocyte function.


Subject(s)
Chemokines/metabolism , Chemotaxis, Leukocyte/physiology , Dendritic Cells/physiology , Guanine Nucleotide Dissociation Inhibitors/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Neutrophils/physiology , T-Lymphocytes/physiology , Animals , Chemotactic Factors/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Mice , RGS Proteins/metabolism , Signal Transduction/physiology
9.
J Immunol ; 196(2): 846-56, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26667172

ABSTRACT

Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens.


Subject(s)
Bacterial Infections/immunology , Carrier Proteins/immunology , Lysosomes/immunology , Macrophages/immunology , Macrophages/microbiology , Animals , Flow Cytometry , Guanine Nucleotide Dissociation Inhibitors , Immunoblotting , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Polymerase Chain Reaction , RNA, Small Interfering
10.
Mol Pharmacol ; 88(2): 231-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25972449

ABSTRACT

Group II activator of G-protein signaling (AGS) proteins contain one or more G-protein regulatory motifs (GPR), which serve as docking sites for GαiGDP independent of Gßγ and stabilize the GDP-bound conformation of Gαi, acting as guanine nucleotide dissociation inhibitors. The GαGPR interaction is regulated by seven-transmembrane-spanning (7TM) receptors in the intact cell as determined by bioluminescence resonance energy transfer (BRET). It is hypothesized that a 7TM receptor directly couples to the GαGPR complex in a manner analogous to receptor coupling to the Gαßγ heterotrimer. As an initial approach to test this hypothesis, we used BRET to examine 7TM receptor-mediated regulation of GαGPR in the intact cell when Gαi2 yellow fluorescent protein (YFP) was tethered to the carboxyl terminus of the α2A adrenergic receptor (α2AAR-Gαi2YFP). AGS3- and AGS4-Renilla luciferase (Rluc) exhibited robust BRET with the tethered GαiYFP, and this interaction was regulated by receptor activation localizing the regulation to the receptor microenvironment. Agonist regulation of the receptor-Gαi-GPR complex was also confirmed by coimmunoprecipitation and cell fractionation. The tethered Gαi2 was rendered pertussis toxin-insensitive by a C352I mutation, and receptor coupling to endogenous Gαi/oßγ was subsequently eliminated by cell treatment with pertussis toxin (PT). Basal and agonist-induced regulation of α2AAR-Gαi2YFP(C352I):AGS3Rluc and α2AAR-Gαi2YFP(C352I):AGS4Rluc BRET was not altered by PT treatment or Gßγ antagonists. Thus, the localized regulation of GαGPR by receptor activation appears independent of endogenous Gαi/oßγ, suggesting that GαiAGS3 and GαiAGS4 directly sense agonist-induced conformational changes in the receptor, as is the case for 7TM receptor coupling to the Gαßγ heterotrimer. The direct coupling of a receptor to the GαiGPR complex provides an unexpected platform for signal propagation with broad implications.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Proteins/metabolism , Pertussis Toxin/pharmacology , Receptors, G-Protein-Coupled/metabolism , Animals , Bioluminescence Resonance Energy Transfer Techniques/methods , GTP-Binding Protein alpha Subunit, Gi2/chemistry , GTP-Binding Protein alpha Subunit, Gi2/genetics , GTP-Binding Protein alpha Subunit, Gi2/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Proteins/chemistry , HEK293 Cells , Humans , Models, Molecular , Molecular Docking Simulation , Mutation , Protein Conformation/drug effects , Rats , Receptors, G-Protein-Coupled/chemistry
11.
Methods Mol Biol ; 1278: 457-65, 2015.
Article in English | MEDLINE | ID: mdl-25859969

ABSTRACT

Bioluminescence resonance energy transfer (BRET) is a valuable tool to detect protein-protein interactions. BRET utilizes bioluminescent and fluorescent protein tags with compatible emission and excitation properties, making it possible to examine resonance energy transfer when the tags are in close proximity (<10 nm) as a typical result of protein-protein interactions. Here we describe a protocol for detecting BRET from two known protein binding partners (Gαi1 and RGS14) in HEK 293 cells using Renilla luciferase and yellow fluorescent protein tags. We discuss the calculation of the acceptor/donor ratio as well as net BRET and demonstrate that BRET can be used as a platform to investigate the regulation of protein-protein interactions in live cells in real time.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Protein Interaction Mapping/methods , RGS Proteins/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , HEK293 Cells , Humans , Luciferases, Renilla/chemistry , Luminescent Measurements , Protein Binding , RGS Proteins/chemistry
12.
J Mol Signal ; 10: 6, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-27096004

ABSTRACT

Activator of G-protein signaling 3 (AGS3) is an accessory protein that functions to regulate the activation status of heterotrimeric G-protein subunits. To date, however, the downstream signaling pathways regulated by AGS3 remain to be fully elucidated, particularly in renal epithelial cells. In the present study, normal rat kidney (NRK-52E) proximal tubular epithelial cells were genetically modified to regulate the expression of AGS3 to investigate its role on MAPK and mTOR signaling to control epithelial cell number. Knockdown of endogenous AGS3 protein was associated with a reduced phosphorylated form of ERK5 and increased apoptosis as determined by elevated cleaved caspase-3. In the presence of the ERK5 inhibitor, BIX02189, a significant 2-fold change (P < 0.05) in G2/M transition state was detected compared to control conditions. Neither of the other MAPK, ERK1/2 or p38 MAPK, nor another pro-survival pathway, mTOR, was significantly altered by the changes in AGS3 protein levels in the renal epithelial cells. The selective ERK5 inhibitor, BIX02189, was found to dose-dependently reduce NRK cell number by up to 41% (P < 0.05) compared to control cells. In summary, these findings demonstrated that cell viability was regulated by AGS3 and was associated with ERK5 activation in renal epithelial cells.

13.
PLoS One ; 9(9): e107478, 2014.
Article in English | MEDLINE | ID: mdl-25216273

ABSTRACT

To interrogate why redox homeostasis and glutathione S-transferase P (GSTP) are important in regulating bone marrow cell proliferation and migration, we isolated crude bone marrow, lineage negative and bone marrow derived-dendritic cells (BMDDCs) from both wild type (WT) and knockout (Gstp1/p2(-/-)) mice. Comparison of the two strains showed distinct thiol expression patterns. WT had higher baseline and reactive oxygen species-induced levels of S-glutathionylated proteins, some of which (sarco-endoplasmic reticulum Ca2(+)-ATPase) regulate Ca(2+) fluxes and subsequently influence proliferation and migration. Redox status is also a crucial determinant in the regulation of the chemokine system. CXCL12 chemotactic response was stronger in WT cells, with commensurate alterations in plasma membrane polarization/permeability and intracellular calcium fluxes; activities of the downstream kinases, ERK and Akt were also higher in WT. In addition, expression levels of the chemokine receptor CXCR4 and its associated phosphatase, SHP-2, were higher in WT. Inhibition of CXCR4 or SHP2 decreased the extent of CXCL12-induced migration in WT BMDDCs. The differential surface densities of CXCR4, SHP-2 and inositol trisphosphate receptor in WT and Gstp1/p2(-/-) cells correlated with the differential CXCR4 functional activities, as measured by the extent of chemokine-induced directional migration and differences in intracellular signaling. These observed differences contribute to our understanding of how genetic ablation of GSTP causes different levels of myeloproliferation and migration [corrected]


Subject(s)
Bone Marrow/enzymology , Cell Movement/genetics , Glutathione Transferase/metabolism , Metabolic Networks and Pathways/genetics , Animals , Cell Proliferation/genetics , Chemokine CXCL12/biosynthesis , Gene Expression Regulation , Glutathione Transferase/genetics , Mice , Mice, Knockout , Oxidation-Reduction , Protein Tyrosine Phosphatase, Non-Receptor Type 11/biosynthesis , Reactive Oxygen Species/metabolism , Receptors, CXCR4/biosynthesis
14.
J Biol Chem ; 289(15): 10738-10747, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24573680

ABSTRACT

Activator of G-protein signaling 3 (AGS3, gene name G-protein signaling modulator-1, Gpsm1), an accessory protein for G-protein signaling, has functional roles in the kidney and CNS. Here we show that AGS3 is expressed in spleen, thymus, and bone marrow-derived dendritic cells, and is up-regulated upon leukocyte activation. We explored the role of AGS3 in immune cell function by characterizing chemokine receptor signaling in leukocytes from mice lacking AGS3. No obvious differences in lymphocyte subsets were observed. Interestingly, however, AGS3-null B and T lymphocytes and bone marrow-derived dendritic cells exhibited significant chemotactic defects as well as reductions in chemokine-stimulated calcium mobilization and altered ERK and Akt activation. These studies indicate a role for AGS3 in the regulation of G-protein signaling in the immune system, providing unexpected venues for the potential development of therapeutic agents that modulate immune function by targeting these regulatory mechanisms.


Subject(s)
Carrier Proteins/metabolism , Chemokines/metabolism , Leukocytes/metabolism , Signal Transduction , Amino Acid Motifs , Animals , B-Lymphocytes/cytology , Bone Marrow Cells/cytology , Calcium/metabolism , Chemotaxis , Dendritic Cells/cytology , Female , GTP-Binding Proteins/metabolism , Guanine Nucleotide Dissociation Inhibitors , Immune System , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Spleen/cytology , T-Lymphocytes/cytology , Thymocytes/cytology
15.
Carcinogenesis ; 35(5): 1100-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24379240

ABSTRACT

The E3 ubiquitin ligase EDD is overexpressed in recurrent, platinum-resistant ovarian cancers, suggesting a role in tumor survival and/or platinum resistance. EDD knockdown by small interfering RNA (siRNA) induced apoptosis in A2780ip2, OVCAR5 and ES-2 ovarian cancer cells, correlating with loss of the prosurvival protein myeloid cell leukemia sequence 1 (Mcl-1) through a glycogen synthase kinase 3 beta-independent mechanism. SiRNA to EDD or Mcl-1 induced comparable levels of apoptosis in A2780ip2 and ES-2 cells. Stable overexpression of Mcl-1 protected cells from apoptosis following EDD knockdown, accompanied by a loss of endogenous, but not exogenous, Mcl-1 protein, suggesting that EDD regulated Mcl-1 synthesis. Indeed, EDD knockdown induced a 1.87-fold decrease in Mcl-1 messenger RNA and EDD transfection enhanced murine Mcl-1 promoter-driven luciferase expression 5-fold. To separate EDD survival and potential cisplatin resistance functions, we generated EDD shRNA stable cell lines that could survive initial EDD knockdown and showed that these cells were 4- to 21-fold more sensitive to cisplatin. Moreover, transient EDD overexpression in COS-7 cells was sufficient to promote cisplatin resistance 2.4-fold, dependent upon its E3 ligase activity. In vivo, mouse intraperitoneal ES-2 and A2780ip2 xenograft experiments showed that mice treated with EDD siRNA by nanoliposomal delivery [1,2-dioleoyl-sn-glycero-3-phophatidylcholine (DOPC)] and cisplatin had significantly less tumor burden than those treated with control siRNA/DOPC alone (ES-2, 77.9% reduction, P = 0.004; A2780ip2, 75.9% reduction, P = 0.042) or control siRNA/DOPC with cisplatin in ES-2 (64.4% reduction, P = 0.035), with a trend in A2780ip2 (60.3% reduction, P = 0.168). These results identify EDD as a dual regulator of cell survival and cisplatin resistance and suggest that EDD is a therapeutic target for ovarian cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Apoptosis/genetics , Carcinoma, Ovarian Epithelial , Cell Line , Cell Survival/drug effects , Cell Survival/genetics , Cisplatin/administration & dosage , Disease Models, Animal , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Mice , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasms, Glandular and Epithelial/drug therapy , Neoplasms, Glandular and Epithelial/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Proteolysis , Transcription, Genetic , Xenograft Model Antitumor Assays
16.
Mol Pharmacol ; 85(3): 388-96, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24302560

ABSTRACT

Activators of G protein signaling (AGS), initially discovered in the search for receptor-independent activators of G protein signaling, define a broad panel of biologic regulators that influence signal transfer from receptor to G-protein, guanine nucleotide binding and hydrolysis, G protein subunit interactions, and/or serve as alternative binding partners for Gα and Gßγ independently of the classic heterotrimeric Gαßγ. AGS proteins generally fall into three groups based upon their interaction with and regulation of G protein subunits: group I, guanine nucleotide exchange factors (GEF); group II, guanine nucleotide dissociation inhibitors; and group III, entities that bind to Gßγ. Group I AGS proteins can engage all subclasses of G proteins, whereas group II AGS proteins primarily engage the Gi/Go/transducin family of G proteins. A fourth group of AGS proteins with selectivity for Gα16 may be defined by the Mitf-Tfe family of transcription factors. Groups I-III may act in concert, generating a core signaling triad analogous to the core triad for heterotrimeric G proteins (GEF + G proteins + effector). These two core triads may function independently of each other or actually cross-integrate for additional signal processing. AGS proteins have broad functional roles, and their discovery has advanced new concepts in signal processing, cell and tissue biology, receptor pharmacology, and system adaptation, providing unexpected platforms for therapeutic and diagnostic development.


Subject(s)
GTP-Binding Protein Regulators/metabolism , GTP-Binding Proteins/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction/physiology , Animals
17.
PLoS One ; 8(11): e81886, 2013.
Article in English | MEDLINE | ID: mdl-24312373

ABSTRACT

In macrophages autophagy assists antigen presentation, affects cytokine release, and promotes intracellular pathogen elimination. In some cells autophagy is modulated by a signaling pathway that employs Gαi3, Activator of G-protein Signaling-3 (AGS3/GPSM1), and Regulator of G-protein Signaling 19 (RGS19). As macrophages express each of these proteins, we tested their importance in regulating macrophage autophagy. We assessed LC3 processing and the formation of LC3 puncta in bone marrow derived macrophages prepared from wild type, Gnai3(-/-), Gpsm1(-/-), or Rgs19(-/-) mice following amino acid starvation or Nigericin treatment. In addition, we evaluated rapamycin-induced autophagic proteolysis rates by long-lived protein degradation assays and anti-autophagic action after rapamycin induction in wild type, Gnai3(-/-), and Gpsm1(-/-) macrophages. In similar assays we compared macrophages treated or not with pertussis toxin, an inhibitor of GPCR (G-protein couple receptor) triggered Gαi nucleotide exchange. Despite previous findings, the level of basal autophagy, autophagic induction, autophagic flux, autophagic degradation and the anti-autophagic action in macrophages that lacked Gαi3, AGS3, or RGS19; or had been treated with pertussis toxin, were similar to controls. These results indicate that while Gαi signaling may impact autophagy in some cell types it does not in macrophages.


Subject(s)
Autophagy , Carrier Proteins/physiology , GTP-Binding Protein alpha Subunits, Gi-Go/physiology , Macrophages/immunology , RGS Proteins/physiology , Animals , Carrier Proteins/genetics , Cells, Cultured , Flow Cytometry , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Guanine Nucleotide Dissociation Inhibitors , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Proteolysis , RGS Proteins/genetics
18.
Methods Enzymol ; 522: 153-67, 2013.
Article in English | MEDLINE | ID: mdl-23374185

ABSTRACT

The G-protein regulatory (GPR) motif serves as a docking site for Gαi-GDP free of Gßγ. The GPR-Gα complex may function at the cell cortex and/or at intracellular sites. GPR proteins include the Group II Activators of G-protein signaling identified in a functional screen for receptor-independent activators of G-protein signaling (GPSM1-3, RGS12) each of which contain 1-4 GPR motifs. GPR motifs are also found in PCP2/L7(GPSM4), Rap1-Gap1 Transcript Variant 1, and RGS14. While the biochemistry of the interaction of GPR proteins with purified Gα is generally understood, the dynamics of this signaling complex and its regulation within the cell remains undefined. Major questions in the field revolve around the factors that regulate the subcellular location of GPR proteins and their interaction with Gαi and other binding partners in the cell. As an initial approach to this question, we established a platform to monitor the GPR-Gαi complex in intact cells using bioluminescence resonance energy transfer.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques , GTP-Binding Protein Regulators/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Binding Sites , GTP-Binding Protein Regulators/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Gene Expression , Genes, Reporter , HEK293 Cells , Humans , Luciferases , Molecular Probes , Protein Binding , Protein Interaction Domains and Motifs , Signal Transduction , Transfection
19.
J Biol Chem ; 288(5): 3003-15, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23212907

ABSTRACT

Group II activators of G-protein signaling (AGS) serve as binding partners for Gα(i/o/t) via one or more G-protein regulatory (GPR) motifs. GPR-Gα signaling modules may be differentially regulated by cell surface receptors or by different nonreceptor guanine nucleotide exchange factors. We determined the effect of the nonreceptor guanine nucleotide exchange factors AGS1, GIV/Girdin, and Ric-8A on the interaction of two distinct GPR proteins, AGS3 and AGS4, with Gα(il) in the intact cell by bioluminescence resonance energy transfer (BRET) in human embryonic kidney 293 cells. AGS3-Rluc-Gα(i1)-YFP and AGS4-Rluc-Gα(i1)-YFP BRET were regulated by Ric-8A but not by Gα-interacting vesicle-associated protein (GIV) or AGS1. The Ric-8A regulation was biphasic and dependent upon the amount of Ric-8A and Gα(i1)-YFP. The inhibitory regulation of GPR-Gα(i1) BRET by Ric-8A was blocked by pertussis toxin. The enhancement of GPR-Gα(i1) BRET observed with Ric-8A was further augmented by pertussis toxin treatment. The regulation of GPR-Gα(i) interaction by Ric-8A was not altered by RGS4. AGS3-Rluc-Gα(i1)-YFP and AGS4-Rluc-G-Gα(i1)-YFP BRET were observed in both pellet and supernatant subcellular fractions and were regulated by Ric-8A in both fractions. The regulation of the GPR-Gα(i1) complex by Ric-8A, as well as the ability of Ric-8A to restore Gα expression in Ric8A(-/-) mouse embryonic stem cells, involved two helical domains at the carboxyl terminus of Ric-8A. These data indicate a dynamic interaction between GPR proteins, Gα(i1) and Ric-8A, in the cell that influences subcellular localization of the three proteins and regulates complex formation.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , Animals , Bioluminescence Resonance Energy Transfer Techniques , Cell Fractionation , Guanine Nucleotide Exchange Factors/chemistry , HEK293 Cells , Humans , Mice , Mutant Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Pertussis Toxin/pharmacology , RGS Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Signal Transduction/drug effects , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Transfection , Vesicular Transport Proteins/metabolism , ras Proteins/metabolism
20.
J Biol Chem ; 288(5): 3620-31, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23250758

ABSTRACT

Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates heterotrimeric G protein and H-Ras signaling pathways. RGS14 possesses an RGS domain that binds active Gα(i/o)-GTP subunits to promote GTP hydrolysis and a G protein regulatory (GPR) motif that selectively binds inactive Gα(i1/3)-GDP subunits to form a stable heterodimer at cellular membranes. RGS14 also contains two tandem Ras/Rap binding domains (RBDs) that bind H-Ras. Here we show that RGS14 preferentially binds activated H-Ras-GTP in live cells to enhance H-Ras cellular actions and that this interaction is regulated by inactive Gα(i1)-GDP and G protein-coupled receptors (GPCRs). Using bioluminescence resonance energy transfer (BRET) in live cells, we show that RGS14-Luciferase and active H-Ras(G/V)-Venus exhibit a robust BRET signal at the plasma membrane that is markedly enhanced in the presence of inactive Gα(i1)-GDP but not active Gα(i1)-GTP. Active H-Ras(G/V) interacts with a native RGS14·Gα(i1) complex in brain lysates, and co-expression of RGS14 and Gα(i1) in PC12 cells greatly enhances H-Ras(G/V) stimulatory effects on neurite outgrowth. Stimulation of the Gα(i)-linked α(2A)-adrenergic receptor induces a conformational change in the Gα(i1)·RGS14·H-Ras(G/V) complex that may allow subsequent regulation of the complex by other binding partners. Together, these findings indicate that inactive Gα(i1)-GDP enhances the affinity of RGS14 for H-Ras-GTP in live cells, resulting in a ternary signaling complex that is further regulated by GPCRs.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , RGS Proteins/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Adrenergic, beta-2/metabolism , Animals , Cell Membrane/metabolism , Cell Survival , HEK293 Cells , Humans , Mice , Models, Biological , Neurites/metabolism , PC12 Cells , Protein Binding , Protein Structure, Tertiary , Protein Transport , RGS Proteins/chemistry , Rats , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...