Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Photochem Photobiol ; 95(5): 1258-1266, 2019 09.
Article in English | MEDLINE | ID: mdl-31017671

ABSTRACT

The ultraviolet-A (UVA) part of the solar spectrum at the Earth's surface is an essential environmental factor but continuous long-time monitoring of UVA radiation is rarely done. In Austria, three existing stations of the UV monitoring network have been upgraded with UVA broadband instruments. At each station, one instrument measures global UVA irradiance and-in parallel-a second instrument measures diffuse irradiance. Recent and past measurements are available via a web page. This paper describes the used instruments, calibration and quality assurance and control procedures. Global and diffuse UVA measurements during a period of up to 5 years are presented. Data indicate clear annual courses and an increase of UVA with altitude by 8-9% per 1000 m. In the first half of the year, UVA radiation is higher than in the second half, due to less cloudiness. In Vienna (153 m asl), the mean daily global UVA radiant exposure in summer is almost as high as at Mt. Gerlitzen (1540 m asl), equalizing the altitude effect, due to less cloudiness. However, in winter, the UVA radiant exposure at Mt. Gerlitzen is double as high, as in Vienna.

2.
Article in English | MEDLINE | ID: mdl-30103479

ABSTRACT

Overexposure to solar ultraviolet (UV) radiation is a risk for public health. Therefore, it is important to provide information to the public about the level of solar UV. The UV-Index (UVI) is the relevant quantity, expressing the erythemally weighted irradiance to a horizontal plane on a simple scale. As solar UV irradiance is strongly variable in time and space, measurements within a network provide the best source of information, provided they can be made available rapidly. However, to ensure the information is reliable, strict quality assurance/quality control (QA/QC) procedures for the monitoring networks are necessary. Near real time presentation of the measured UVI on web-pages is the best way to inform the public. The interpretation of the data in terms of the individual 'allowable' exposure time is heavily impacted by skin type, behavior, and clothing, and must be learned for each person through experience and guidance. Nonetheless, reliable knowledge of the actual level of the intensity of erythemally weighted irradiance and its variability forms the basis of education and public awareness. The challenges and requirements in providing comprehensive UVI data for public health guidance are here considered.


Subject(s)
Public Health/methods , Radiation Monitoring/methods , Ultraviolet Rays/adverse effects , Humans
3.
Photochem Photobiol Sci ; 16(9): 1349-1370, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28848959

ABSTRACT

The UV Index was established more than 20 years ago as a tool for sun protection and health care. Shortly after its introduction, UV Index monitoring started in several countries either by newly acquired instruments or by converting measurements from existing instruments into the UV Index. The number of stations and networks has increased over the years. Currently, 160 stations in 25 European countries deliver online values to the public via the Internet. In this paper an overview of these UV Index monitoring sites in Europe is given. The overview includes instruments as well as quality assurance and quality control procedures. Furthermore, some examples are given about how UV Index values are presented to the public. Through these efforts, 57% of the European population is supplied with high quality information, enabling them to adapt behaviour. Although health care, including skin cancer prevention, is cost-effective, a proportion of the European population still doesn't have access to UV Index information.

4.
Appl Opt ; 53(19): 4313-9, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-25089995

ABSTRACT

An approach is presented to characterize and correct stray light in spectra measured with array spectroradiometers and caused by out-of-spectral range radiation. A prerequisite for out-of-range stray light correction is knowledge of the spectral irradiance not measured by the instrument itself. A way of solving this problem for solar UV measurements is shown. The effect of out-of-range stray light is especially important for solar UV spectroradiometers typically having a spectral range narrower than that of the silicon detectors in use. Two different types of instruments used for solar UV measurements were characterized and corrected for out-of-range and in-range stray light. As a hardware solution to the out-of-range stray light problem, a bandpass filter was fitted in one array spectroradiometer. Results of test measurements using this modified instrument are also shown.

5.
Dermatoendocrinol ; 4(1): 2-7, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22870344

ABSTRACT

An observational study and a "clinical trial" seem to prove that rosuvastatin (but not fluvastatin) dramatically increases serum levels of 25-(OH)-D3 (three-fold above starting values). A critical analysis of the two publications, presented below, raises serious concerns. Conclusions from these two studies have already been drawn in the scientific literature.It is argued that claiming or believing in a "novel pleiotropic effect of rosuvastatin" may be misleading and premature.

6.
Rev Sci Instrum ; 80(9): 096108, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19791979

ABSTRACT

A stray light matrix correction method for array spectrometers is presented that is specifically tailored for solar spectral measurements. A stray light distribution function based on a single laser line measurement is approximated by an analytical function using three parameters only. This function is the basis for the stray light correction matrix. One cutoff filter is then used to adjust an offset parameter such that stray light corrected data are spectrally flat and around zero below the cutoff wavelength. This parameter also accounts for the IR contribution and has to be adjusted individually for each type of spectrum. A solid validation is given by intercomparison of calibrated solar spectra with a double-monochromator spectroradiometer. An agreement of 5% for wavelengths down to 307 nm and solar zenith angle smaller than 70 degrees is achieved.


Subject(s)
Photometry/instrumentation , Radiometry/instrumentation , Solar Energy , Spectrum Analysis/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
7.
Appl Opt ; 48(6): 1091-7, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-23567568

ABSTRACT

A simple and inexpensive fully automated all-sky imaging system based on a commercial digital camera with a fish-eye lens and a rotating polarizer is presented. The system is characterized and two examples of applications in atmospheric physics are given: polarization maps and cloud detection. All-sky polarization maps are obtained by acquiring images at different polarizer angles and computing Stokes vectors. The polarization in the principal plane, a vertical cut through the sky containing the Sun, is compared to measurements of a well-characterized spectroradiometer with polarized radiance optics to validate the method. The images are further used for automated cloud detection using a simple color-ratio algorithm. The resulting cloud cover is validated against synoptic cloud observations. A Sun coverage parameter is introduced that shows, in combination with the total cloud cover, useful correlation with UV irradiance.

8.
Appl Opt ; 47(10): 1594-607, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18382591

ABSTRACT

The characterization of a charged-coupled device (CCD) spectrograph developed at the Laboratory of Atmospheric Physics, Thessaloniki is presented. The absolute sensitivity of the instrument for direct irradiance and sky radiance measurements was determined, respectively, with an uncertainty of 4.4% and 6.6% in the UV-B, and 3% and 6% in the UV-A, visible and near-infrared (NIR) wavelength ranges. The overall uncertainty associated with the direct irradiance and the sky radiance measurements is, respectively, of the order of 5% and 7% in the UV-B, increasing to 10% for low signals [e.g., at solar zenith angles (SZAs) larger than 70 degrees ], and 4% and 6% in the UV-A, visible, and NIR. Direct solar spectral irradiance measurements from an independently calibrated spectroradiometer (Bentham DTM 300) were compared with the corresponding CCD measurements. Their agreement in the wavelength range of 310-500nm is within 0.5% +/- 1.1% (for SZA between 20 degrees and 70 degrees ). Aerosol optical depth (AOD) derived by the two instruments using direct Sun spectra and by a collocated Cimel sunphotometer [Aerosol Robotic network (AERONET)] agree to within 0.02 +/- 0.02 in the range of 315-870 nm. Significant correlation coefficients with a maximum of 0.99 in the range of 340-360 nm and a minimum of 0.90 at 870 nm were found between synchronous AOD measurements with the Bentham and the Cimel instruments.

9.
Opt Lett ; 32(1): 80-2, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17167590

ABSTRACT

The optical reference plane of a J1002 shaped dome diffuser from CMS-Schreder was determined using direct normal spectral solar UV irradiance measurements relative to a flat Teflon diffuser. The spectroradiometers were calibrated relative to the same irradiance standard. The optical reference plane of the shaped J1002 diffuser is 5.3 mm behind the top of the dome with an uncertainty of 1.0 mm. Solar UV irradiance measurements based on a lamp calibration using the top of the dome as the reference will overestimate the global solar irradiance by 2.1% for the usual calibration distance of 500 mm.

10.
Appl Opt ; 44(33): 7136-43, 2005 Nov 20.
Article in English | MEDLINE | ID: mdl-16318185

ABSTRACT

This paper introduces a device that was developed to measure the angular response of UV spectroradiometers in the field. This device is designed to be used at the operating position of spectroradiometers; thus the derived angular response also includes any effects from imperfect leveling of the diffuser and corresponds to the actual operational angular response. The design and characterization of the device and the results from its application on 11 different spectroradiometers that operate at different European UV stations are presented. Various sources of uncertainties that were identified result in a combined uncertainty in determining the angular response, which ranges between approximately 1.5% and 10%, depending on the incidence angle and the characteristics of the diffuser. For the 11 instruments, the error in reporting the diffuse irradiance ranges between 2% and - 13%, assuming isotropic distribution of the downwelling radiances.

11.
Appl Opt ; 44(25): 5321-31, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16149356

ABSTRACT

A transportable reference spectroradiometer for measuring spectral solar ultraviolet irradiance has been developed and validated. The expanded uncertainty of solar irradiance measurements with this reference spectroradiometer, based on the described methodology, is 8.8% to 4.6%, depending on the wavelength and the solar zenith angle. The accuracy of the spectroradiometer was validated by repeated site visits to two European UV monitoring sites as well as by regular comparisons with the reference spectroradiometer of the European Reference Centre for UV radiation measurements in Ispra, Italy. The spectral solar irradiance measurements of the Quality Assurance of Spectral Ultraviolet Measurements in Europe through the Development of a Transportable Unit (QASUME) spectroradiometer and these three spectroradiometers have agreed to better than 6% during the ten intercomparison campaigns held from 2002 to 2004. If the differences in irradiance scales of as much as 2% are taken into account, the agreement is of the order of 4% over the wavelength range of 300-400 nm.

12.
Appl Opt ; 44(9): 1681-90, 2005 Mar 20.
Article in English | MEDLINE | ID: mdl-15813271

ABSTRACT

We present three different methods for the absolute calibration of direct spectral irradiances measured with a Brewer spectroradiometer, which are shown to agree to within +/- 2%. Direct irradiance spectra derived by Brewer and Bentham spectroradiometers agree to within 4 +/- 3%. Good agreement was also found by a comparison of the aerosol optical depth and Angstrom exponent retrieved by the two instruments and a multifilter rotational shadowband radiometer. The spectral aerosol optical depth (300-365 nm) derived from six years of direct irradiance measurements at Thessaloniki shows a distinct seasonal variation, averaging to approximately 0.3 at 340 nm in winter and approximately 0.7 in summer.

13.
Opt Lett ; 29(13): 1455-7, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-15259711

ABSTRACT

The relative spectral responses of erythemally weighted broadband radiometers determined at three different laboratories are compared, and the systems are described. The results of measurements of four different broadband radiometers are discussed. Although the common dynamic range of the measured relative spectral responses is approximately 10(4), the differences in the relative spectral response functions are lower than 20%. These differences are related mostly to measurement uncertainties and differences in the spectral response facilities.

14.
Appl Opt ; 42(18): 3472-9, 2003 Jun 20.
Article in English | MEDLINE | ID: mdl-12833946

ABSTRACT

A six-channel moderate-bandwidth filter instrument for measurement of UV and visible radiation has been developed. The characteristic of the instrument are described, including the spectral and the angular responses. Furthermore the calibration procedure is outlined. Combining information from several channels, one may determine the total ozone-column amount, various biological dose rates, a cloud transmission factor, and the effective cloud optical depth. The methods used to determine these parameters are presented, and the measured parameters are compared with similar ones obtained from other instruments. The total ozone as measured by the instrument agrees with measurements from a standard Brewer to -0.05% +/- 2.04% over a two-year period. Two weeks of cloudless Commission Internationale de L'Eclairage dose rates agree with those from a Bentham double monochromator spectroradiometer to 0.99 +/- 0.03.

15.
Appl Opt ; 41(30): 6341-50, 2002 Oct 20.
Article in English | MEDLINE | ID: mdl-12396183

ABSTRACT

The erythemal radiometers of the Ultraviolet Monitoring Network of the Argentine Servicio Meteorológico Nacional were calibrated in an extensive in situ campaign from October 1998 to April 1999 with Austrian reference instruments. Methods to correct the influence of the location's horizon and long-term detector changes are applied. The different terms that contribute to the measurement uncertainty are analyzed. The expanded uncertainty is estimated to be +/- 10% at 70 degrees solar zenith angle (SZA) and +/-6% for a SZA of <50 degrees. We observed significant changes for some detectors over hours and days, reaching a maximum diurnal drift of +/-5% at a SZA of 70 degrees and a maximum weekly variation of +/-4%.

16.
Appl Opt ; 41(21): 4273-7, 2002 Jul 20.
Article in English | MEDLINE | ID: mdl-12148754

ABSTRACT

To quantify the effect of ambient temperature on the voltage signal of Solar Light UV-Biometers, spectral response functions of two instruments were determined in the laboratory under various external temperature conditions. Despite the biometer's internal temperature stabilization, a temperature increase of 20 degrees C at the outside of an instrument's housing resulted in a reduction of the instrument's spectral response by as much as 10% in the UVB range and by as much as a factor of 2 in the UVA range, depending on the individual instrument and on its internal relative humidity. The significance of this effect for outdoor measurements is demonstrated by data from an intercomparison campaign of erythemal radiometers in Thessaloniki, Greece, organized by the Laboratory of Atmospheric Physics (Aristotle University of Thessaloniki), the Cooperation in Science and Technology (European Commission), and the World Meteorological Organization. On 16 September 1999, 12 of 16 Solar Light Biometers showed significant diurnal variation in their sensitivity (as much as 10% for some individual instruments), which can be explained through a heating of the instruments' housings due to direct solar radiation.

17.
Appl Opt ; 41(21): 4278-82, 2002 Jul 20.
Article in English | MEDLINE | ID: mdl-12148755

ABSTRACT

A program for quality assurance of reference standards has been initiated among nine solar-UV monitoring laboratories. By means of a traveling lamp package that comprises several 1000-W ANSI code DXW-type quartz-halogen lamps, a 0.1-ohm shunt, and a 6-1/2 digit voltmeter, the irradiance scales used by the nine laboratories were compared with one another; a relative uncertainty of 1.2% was found. The comparison of 15 reference standards yielded differences of as much as 9%; the average difference was less than 3%.

18.
Appl Opt ; 41(9): 1629-39, 2002 Mar 20.
Article in English | MEDLINE | ID: mdl-11921789

ABSTRACT

A measurement campaign was organized in March 1999 in the Bavarian Alps as part of the European project, Characteristics of the UV Radiation Field in the Alps (CUVRA), to analyze the effect of altitude, aerosols, and snow cover on ground-level UV spectral irradiance. We present the results of simultaneous measurements of aerosol optical depth (AOD) made at various sites on two cloudless days in March 1999. The two days exhibited different aerosol conditions. Results derived from spectral measurements of UV irradiance are compared with data from filter radiometer measurements made at discrete wavelengths extending from the UV to the near IR. The different methods generated values for the AOD that were in good agreement. This result confirms that one can use either method to retrieve the AOD with an uncertainty of approximately 0.03-0.05. On 18 March, high turbidity was observed at low altitude (400-nm AOD approximately 0.5 at 700 m above sea level), and the AOD decreased regularly with altitude; on 24 March, the turbidity was much less (0.11 at 700 m above sea level). On both days very low AODs (0.05-0.09) were measured at 3000 m above sea level. The spectral dependence of the AOD is often parameterized by the angstrom relationship; the alpha parameter is generally difficult or impossible to retrieve from spectral measurements because of the relatively narrow wavelength range (320-400 nm), and only one of the spectro-radiometers used during the campaign permits this retrieval. In most cases, during this field campaign, alpha was found by filter sunphotometers to be 1.1-1.5.

SELECTION OF CITATIONS
SEARCH DETAIL
...