Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(45): 28515-28524, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33106399

ABSTRACT

Tropical forest loss currently exceeds forest gain, leading to a net greenhouse gas emission that exacerbates global climate change. This has sparked scientific debate on how to achieve natural climate solutions. Central to this debate is whether sustainably managing forests and protected areas will deliver global climate mitigation benefits, while ensuring local peoples' health and well-being. Here, we evaluate the 10-y impact of a human-centered solution to achieve natural climate mitigation through reductions in illegal logging in rural Borneo: an intervention aimed at expanding health care access and use for communities living near a national park, with clinic discounts offsetting costs historically met through illegal logging. Conservation, education, and alternative livelihood programs were also offered. We hypothesized that this would lead to improved health and well-being, while also alleviating illegal logging activity within the protected forest. We estimated that 27.4 km2 of deforestation was averted in the national park over a decade (∼70% reduction in deforestation compared to a synthetic control, permuted P = 0.038). Concurrently, the intervention provided health care access to more than 28,400 unique patients, with clinic usage and patient visitation frequency highest in communities participating in the intervention. Finally, we observed a dose-response in forest change rate to intervention engagement (person-contacts with intervention activities) across communities bordering the park: The greatest logging reductions were adjacent to the most highly engaged villages. Results suggest that this community-derived solution simultaneously improved health care access for local and indigenous communities and sustainably conserved carbon stocks in a protected tropical forest.


Subject(s)
Carbon , Conservation of Natural Resources , Delivery of Health Care , Forests , Rural Health , Adult , Climate Change , Diagnosis , Disease , Female , Forestry , Health Impact Assessment , Humans , Male , Middle Aged , Trees , Tropical Climate
2.
BMC Ecol ; 7: 10, 2007 Sep 27.
Article in English | MEDLINE | ID: mdl-17900366

ABSTRACT

BACKGROUND: Biodiversity offsets are conservation projects used mainly by business to counterbalance the environmental impacts of their operations, with the aim of achieving a net neutral or even beneficial outcome for biodiversity. Companies considering offsets need to know: (1) if there are areas of such biological importance that no impact is acceptable, and outside of these no-go areas, (2) the relative importance of biodiversity in the impacted site versus the site(s) proposed for protection, to ensure that the offset is of equal or greater status than that lost through the company's operations. We compiled a database of 40 schemes that use various methods to assess conservation priorities, and we examined if the schemes would allow companies to answer the above questions. DESCRIPTION: Overall, schemes tend to be designed to guide conservation organizations in their own priority setting or they categorize species based on conservation status. Generally, the schemes do not provide all the necessary information for offsets because they operate at a broad spatial scale or with low spatial resolution, which make it difficult to assess sites at the project level. Furthermore, most schemes do not explicitly incorporate threat, which we consider key to assessing whether offsets protect habitats or species that would otherwise be lost (i.e., provide additionality). The schemes are useful, however, for identifying the major conservation issues in different ecosystems around the globe. CONCLUSION: Companies can proceed by first avoiding, reducing, and mitigating impacts, and then using existing schemes to identify i) no-go areas and ii) appropriate offsets to compensate for any unavoidable loss in biodiversity. If existing schemes are inadequate, then companies should use integrated conservation planning techniques to define offset options within the region of their operations.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Databases, Factual , Animals , Birds , Plants , Wetlands
3.
Ecol Appl ; 17(2): 323-30, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17489241

ABSTRACT

Foresters are currently confronted with a new challenge. For the first time a commonly traded timber species has been listed on the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). At the 12th Conference of the Parties in November 2002, countries voted 68 to 30 to place the premier timber species of Latin America, big-leaf mahogany (Swietenia macrophylla King [Meliaceae]), on CITES Appendix II. Under Appendix II regulations, trade in mahogany requires that exporting countries verify that each shipment was legally obtained and that its harvest was non-detrimental to the survival of the species. Unfortunately, implementation has been weak, in part because countries have yet to develop a common, pragmatic, cost-effective system to make the legal and non-detriment findings. This paper recommends what such a system might include.


Subject(s)
Conservation of Natural Resources/legislation & jurisprudence , Forestry/legislation & jurisprudence , Meliaceae/physiology , Wood , Conservation of Natural Resources/economics , Ecosystem , International Cooperation/legislation & jurisprudence
4.
Oecologia ; 117(1-2): 151-160, 1998 Nov.
Article in English | MEDLINE | ID: mdl-28308481

ABSTRACT

We assessed density- and distance-dependence in herbivore effects and juvenile condition for four species of Shorea, the most speciose genus in the dominant canopy family of southeast Asian rain forest trees (Dipterocarpaceae). Herbivore damage was quantified as partial leaf loss on young leaves, and whole plant foliar condition as the product of the fraction of leaf nodes containing leaves and the fraction of tissue remaining on extant leaves. Adults of the four species were centers of high total, as well as conspecific, density of juveniles (<1 m tall). For two species, S. hopeifolia and S. pinanga, herbivore damage declined significantly with distance, decreasing by 40% and 51% respectively, between 5 m and 35 m from the parent. For the same two species, foliar condition improved significantly between 5 m and 35 m, increasing by 45% for S. hopeifolia and 24% for S. pinanga. If foliar condition influences juvenile survival and growth, more widely dispersed seeds of these species are more likely to recruit to the canopy. In contrast, there was no significant distance-dependence for S. parvifolia or S. longisperma. Among species, herbivore damage was greatest in those species with greatest local juvenile abundances, i.e., those with highest densities, leaf size, juvenile foliar mass and/ or foliar mass/m2 ground area, but was unrelated to the toughness of mature leaves. However, distance was a better predictor of herbivore damage than was conspecific juvenile density, as evaluated by backward elimination regressions, for both S. hopeifolia and S. pinanga. For foliar condition, the best predictor was distance for S. pinanga, but conspecific density for S. hopeifolia, whose juveniles were smallest and occurred at the highest densities. Total juvenile density (all woody plants) was eliminated as a factor in all cases. The species-specificity of effects (i.e., their dependence on conspecific distance or density), together with the marked differences among congeneric species, caution against generalizations regarding distance-dependent effects in diverse forests.

SELECTION OF CITATIONS
SEARCH DETAIL
...