Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35458809

ABSTRACT

In this article, we present our research achievements regarding the development of a remote sensing system for motor pulse acquisition, as a first step towards a complete neuroprosthetic arm. We present the fabrication process of an implantable electrode for nerve impulse acquisition, together with an innovative wirelessly controlled system. In our study, these were combined into an implantable device for attachment to peripheral nerves. Mechanical and biocompatibility tests were performed, as well as in vivo testing on pigs using the developed system. This testing and the experimental results are presented in a comprehensive manner, demonstrating that the system is capable of accomplishing the requirements of its designed application. Most significantly, neural electrical signals were acquired and transmitted out of the body during animal experiments, which were conducted according to ethical regulations in the field.


Subject(s)
Peripheral Nervous System , Remote Sensing Technology , Action Potentials , Animals , Electrodes, Implanted , Peripheral Nerves/physiology , Swine
2.
Article in English | MEDLINE | ID: mdl-20378453

ABSTRACT

Switching power conditioning techniques are known to greatly enhance the performance of linear piezoelectric energy harvesters subject to harmonic vibrations. With such circuits, little is known about the effect of mechanical stoppers that limit the motion or about waveforms other than harmonic vibrations. This work presents SPICE simulations of piezoelectric micro energy harvester systems that differ in choice of power conditioning circuits and stopper models. We consider in detail both harmonic and random vibrations. The nonlinear switching conversion circuitry performs better than simple passive circuitry, especially when mechanical stoppers are in effect. Stopper loss is important under broadband vibrations. Stoppers limit the output power for sinusoidal excitations, but result in the same output power whether the stoppers are lossy or not. When the mechanical stoppers are hit by the proof mass during high-amplitude vibrations, nonlinear effects such as saturation and jumps are present.

SELECTION OF CITATIONS
SEARCH DETAIL
...