Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 7(11): 201215, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33391803

ABSTRACT

Social learning, where information is acquired from others, is taxonomically widespread. There is growing evidence that animals selectively employ 'social learning strategies', which determine e.g. when to copy others instead of learning asocially and whom to copy. Furthermore, once animals have acquired new information, e.g. regarding profitable resources, it is beneficial for them to commit it to long-term memory (LTM), especially if it allows access to profitable resources in the future. Research into social learning strategies and LTM has covered a wide range of taxa. However, otters (subfamily Lutrinae), popular in zoos due to their social nature and playfulness, remained neglected until a recent study provided evidence of social learning in captive smooth-coated otters (Lutrogale perspicillata), but not in Asian short-clawed otters (Aonyx cinereus). We investigated Asian short-clawed otters' learning strategies and LTM performance in a foraging context. We presented novel extractive foraging tasks twice to captive family groups and used network-based diffusion analysis to provide evidence of a capacity for social learning and LTM in this species. A major cause of wild Asian short-clawed otter declines is prey scarcity. Furthering our understanding of how they learn about and remember novel food sources could inform key conservation strategies.

2.
Glob Chang Biol ; 25(12): 3996-4007, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31386782

ABSTRACT

Soil organic matter (SOM) is an indicator of sustainable land management as stated in the global indicator framework of the United Nations Sustainable Development Goals (SDG Indicator 15.3.1). Improved forecasting of future changes in SOM is needed to support the development of more sustainable land management under a changing climate. Current models fail to reproduce historical trends in SOM both within and during transition between ecosystems. More realistic spatio-temporal SOM dynamics require inclusion of the recent paradigm shift from SOM recalcitrance as an 'intrinsic property' to SOM persistence as an 'ecosystem interaction'. We present a soil profile, or pedon-explicit, ecosystem-scale framework for data and models of SOM distribution and dynamics which can better represent land use transitions. Ecosystem-scale drivers are integrated with pedon-scale processes in two zones of influence. In the upper vegetation zone, SOM is affected primarily by plant inputs (above- and belowground), climate, microbial activity and physical aggregation and is prone to destabilization. In the lower mineral matrix zone, SOM inputs from the vegetation zone are controlled primarily by mineral phase and chemical interactions, resulting in more favourable conditions for SOM persistence. Vegetation zone boundary conditions vary spatially at landscape scales (vegetation cover) and temporally at decadal scales (climate). Mineral matrix zone boundary conditions vary spatially at landscape scales (geology, topography) but change only slowly. The thicknesses of the two zones and their transport connectivity are dynamic and affected by plant cover, land use practices, climate and feedbacks from current SOM stock in each layer. Using this framework, we identify several areas where greater knowledge is needed to advance the emerging paradigm of SOM dynamics-improved representation of plant-derived carbon inputs, contributions of soil biota to SOM storage and effect of dynamic soil structure on SOM storage-and how this can be combined with robust and efficient soil monitoring.


Subject(s)
Ecosystem , Soil , Carbon , Climate , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...