Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 11(1): 168, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864255

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comprise a spectrum of neurodegenerative diseases linked to TDP-43 proteinopathy, which at the cellular level, is characterized by loss of nuclear TDP-43 and accumulation of cytoplasmic TDP-43 inclusions that ultimately cause RNA processing defects including dysregulation of splicing, mRNA transport and translation. Complementing our previous work in motor neurons, here we report a novel model of TDP-43 proteinopathy based on overexpression of TDP-43 in a subset of Drosophila Kenyon cells of the mushroom body (MB), a circuit with structural characteristics reminiscent of vertebrate cortical networks. This model recapitulates several aspects of dementia-relevant pathological features including age-dependent neuronal loss, nuclear depletion and cytoplasmic accumulation of TDP-43, and behavioral deficits in working memory and sleep that occur prior to axonal degeneration. RNA immunoprecipitations identify several candidate mRNA targets of TDP-43 in MBs, some of which are unique to the MB circuit and others that are shared with motor neurons. Among the latter is the glypican Dally-like-protein (Dlp), which exhibits significant TDP-43 associated reduction in expression during aging. Using genetic interactions we show that overexpression of Dlp in MBs mitigates TDP-43 dependent working memory deficits, conistent with Dlp acting as a mediator of TDP-43 toxicity. Substantiating our findings in the fly model, we find that the expression of GPC6 mRNA, a human ortholog of dlp, is specifically altered in neurons exhibiting the molecular signature of TDP-43 pathology in FTD patient brains. These findings suggest that circuit-specific Drosophila models provide a platform for uncovering shared or disease-specific molecular mechanisms and vulnerabilities across the spectrum of TDP-43 proteinopathies.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Pick Disease of the Brain , TDP-43 Proteinopathies , Animals , Humans , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Motor Neurons/metabolism , Pick Disease of the Brain/pathology , RNA, Messenger , TDP-43 Proteinopathies/pathology
2.
Acta Neuropathol Commun ; 9(1): 52, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33762006

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative disease in which 97% of patients exhibit cytoplasmic aggregates containing the RNA binding protein TDP-43. Using tagged ribosome affinity purifications in Drosophila models of TDP-43 proteinopathy, we identified TDP-43 dependent translational alterations in motor neurons impacting the spliceosome, pentose phosphate and oxidative phosphorylation pathways. A subset of the mRNAs with altered ribosome association are also enriched in TDP-43 complexes suggesting that they may be direct targets. Among these, dlp mRNA, which encodes the glypican Dally like protein (Dlp)/GPC6, a wingless (Wg/Wnt) signaling regulator is insolubilized both in flies and patient tissues with TDP-43 pathology. While Dlp/GPC6 forms puncta in the Drosophila neuropil and ALS spinal cords, it is reduced at the neuromuscular synapse in flies suggesting compartment specific effects of TDP-43 proteinopathy. These findings together with genetic interaction data show that Dlp/GPC6 is a novel, physiologically relevant target of TDP-43 proteinopathy.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Glypicans/metabolism , Nuclear Proteins/metabolism , Ribosomes/metabolism , TDP-43 Proteinopathies/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Drosophila , Humans , Motor Neurons/metabolism , Motor Neurons/pathology , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , RNA, Messenger/metabolism , Spinal Cord/metabolism , TDP-43 Proteinopathies/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...