Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1085090, 2023.
Article in English | MEDLINE | ID: mdl-36937253

ABSTRACT

Introduction: Translocation is a valuable and increasingly used strategy for the management of both threatened and overabundant wildlife populations. However, in some instances the translocated animals fail to thrive. Differences in diet between the source and destination areas may contribute to poor translocation outcomes, which could conceivably be exacerbated if the animals' microbiomes are unsuited to the new diet and cannot adapt. Methods: In this study we tracked how the faecal microbiome of a specialist Eucalyptus folivore, the koala (Phascolarctos cinereus), changed over the course of a year after translocation. We assessed microbiome composition by 16S rRNA amplicon sequencing of faecal pellets. Results: We found no significant overall changes in the faecal microbiomes of koalas post-translocation (n = 17) in terms of microbial richness, diversity or composition when compared to the faecal microbiomes of koalas from an untranslocated control group (n = 12). This was despite the translocated koalas feeding on a greater variety of Eucalyptus species after translocation. Furthermore, while differences between koalas accounted for half of the microbiome variation, estimated diets at the time of sampling only accounted for 5% of the variation in the koala microbiomes between sampling periods. By contrast, we observed that the composition of koala faecal microbiomes at the time of translocation accounted for 37% of between koala variation in post-translocation diet. We also observed that translocated koalas lost body condition during the first month post-translocation and that the composition of the koalas' initial microbiomes were associated with the magnitude of that change. Discussion: These findings suggest that the koala gut microbiome was largely unaffected by dietary change and support previous findings suggesting that the koala gut microbiome influences the tree species chosen for feeding. They further indicate that future research is needed to establish whether the koalas' gut microbiomes are directly influencing their health and condition or whether aspects of the koala gut microbiomes are an indicator of underlying physiological differences or pathologies. Our study provides insights into how animal microbiomes may not always be affected by the extreme upheaval of translocation and highlights that responses may be host species-specific. We also provide recommendations to improve the success of koala translocations in the future.

2.
Sci Rep ; 12(1): 15787, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36138048

ABSTRACT

Koala retrovirus is a recently endogenized retrovirus associated with the onset of neoplasia and infectious disease in koalas. There are currently twelve described KoRV subtypes (KoRV-A to I, K-M), most of which were identified through recently implemented deep sequencing methods which reveal an animals' overall KoRV profile. This approach has primarily been carried out on wild koala populations around Australia, with few investigations into the whole-population KoRV profile of captive koala colonies to date. This study conducted deep sequencing on 64 captive koalas of known pedigree, housed in three institutions from New South Wales and South-East Queensland, to provide a detailed analysis of KoRV genetic diversity and transmission. The final dataset included 93 unique KoRV sequences and the first detection of KoRV-E within Australian koala populations. Our analysis suggests that exogenous transmission of KoRV-A, B, D, I and K primarily occurs between dam and joey. Detection of KoRV-D in a neonate sample raises the possibility of this transmission occurring in utero. Overall, the prevalence and abundance of KoRV subtypes was found to vary considerably between captive populations, likely due to their different histories of animal acquisition. Together these findings highlight the importance of KoRV profiling for captive koalas, in particular females, who play a primary role in KoRV exogenous transmission.


Subject(s)
Gammaretrovirus , Phascolarctidae , Retroviridae Infections , Animals , Australia/epidemiology , Female , Gammaretrovirus/genetics , Retroviridae/genetics , Retroviridae Infections/epidemiology , Retroviridae Infections/veterinary
3.
Proc Natl Acad Sci U S A ; 119(33): e2122680119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35943984

ABSTRACT

Koala retrovirus (KoRV) subtype A (KoRV-A) is currently in transition from exogenous virus to endogenous viral element, providing an ideal system to elucidate retroviral-host coevolution. We characterized KoRV geography using fecal DNA from 192 samples across 20 populations throughout the koala's range. We reveal an abrupt change in KoRV genetics and incidence at the Victoria/New South Wales state border. In northern koalas, pol gene copies were ubiquitously present at above five per cell, consistent with endogenous KoRV. In southern koalas, pol copies were detected in only 25.8% of koalas and always at copy numbers below one, while the env gene was detected in all animals and in a majority at copy numbers above one per cell. These results suggest that southern koalas carry partial endogenous KoRV-like sequences. Deep sequencing of the env hypervariable region revealed three putatively endogenous KoRV-A sequences in northern koalas and a single, distinct sequence present in all southern koalas. Among northern populations, env sequence diversity decreased with distance from the equator, suggesting infectious KoRV-A invaded the koala genome in northern Australia and then spread south. The exogenous KoRV subtypes (B to K), two novel subtypes, and intermediate subtypes were detected in all northern koala populations but were strikingly absent from all southern animals tested. Apart from KoRV subtype D, these exogenous subtypes were generally locally prevalent but geographically restricted, producing KoRV genetic differentiation among northern populations. This suggests that sporadic evolution and local transmission of the exogenous subtypes have occurred within northern Australia, but this has not extended into animals within southern Australia.


Subject(s)
Endogenous Retroviruses , Evolution, Molecular , Gammaretrovirus , Phascolarctidae , Animals , Endogenous Retroviruses/genetics , Gammaretrovirus/genetics , Genetic Variation , New South Wales , Phascolarctidae/virology , Retroviridae Infections/transmission , Retroviridae Infections/veterinary , Retroviridae Infections/virology , Victoria
4.
PLoS Pathog ; 18(5): e1010513, 2022 05.
Article in English | MEDLINE | ID: mdl-35588407

ABSTRACT

Koala Retrovirus (KoRV) has been associated with neoplasia in the vulnerable koala (Phascolarctos cinereus). However, there are conflicting findings regarding its association with secondary disease. We undertook a large-scale assessment of how the different KoRV subtypes and viral load are associated with Chlamydia pecorum infection and a range of disease pathologies in 151 wild koalas admitted for care to Currumbin Wildlife Hospital, Australia. Viral load (KoRV pol copies per ml of plasma) was the best predictor of more disease pathologies than any other KoRV variable. The predicted probability of a koala having disease symptoms increased from 25% to over 85% across the observed range of KoRV load, while the predicted probability of C. pecorum infection increased from 40% to over 80%. We found a negative correlation between the proportion of env deep sequencing reads that were endogenous KoRV-A and total KoRV load. This is consistent with suppression of endogenous KoRV-A, while the exogenous KoRV subtypes obtain high infection levels. Additionally, we reveal evidence that the exogenous subtypes are directly associated with secondary disease, with the proportion of reads that were the endogenous KoRV-A sequence a negative predictor of overall disease probability after the effect of KoRV load was accounted for. Further, koalas that were positive for KoRV-D or KoRV-D/F were more likely to have urogenital C. pecorum infection or low body condition score, respectively, irrespective of KoRV load. By contrast, our findings do not support previous findings that KoRV-B in particular is associated with Chlamydial disease. Based on these findings we suggest that koala research and conservation programs should target understanding what drives individual differences in KoRV load and limiting exogenous subtype diversity within populations, rather than seeking to eliminate any particular subtype.


Subject(s)
Chlamydia Infections , Gammaretrovirus , Phascolarctidae , Retroviridae Infections , Animals , Animals, Wild , Chlamydia Infections/veterinary , Retroviridae Infections/veterinary
5.
Environ Microbiol ; 24(9): 4209-4219, 2022 09.
Article in English | MEDLINE | ID: mdl-35018700

ABSTRACT

In this study we compared the faecal microbiomes of wild joey koalas (Phascolarctos cinereus) to those of adults, including their mothers, to establish whether gut microbiome maturation and inheritance in the wild is comparable to that seen in captivity. Our findings suggest that joey koala microbiomes slowly shift towards an adult assemblage between 6 and 12 months of age, as the microbiomes of 9-month-old joeys were more similar to those of adults than those of 7-month-olds, but still distinct. At the phylum level, differences between joeys and adults were broadly consistent with those in captivity, with Firmicutes increasing in relative abundance over the joeys' development and Proteobacteria decreasing. Of the fibre-degrading genes that increased in abundance over the development of captive joeys, those involved in hemicellulose and cellulose degradation, but not pectin degradation, were also generally found in higher abundance in adult wild koalas compared to 7-month-olds. Greater maternal inheritance of the faecal microbiome was seen in wild than in captive koalas, presumably due to the more solitary nature of wild koalas. This strong maternal inheritance of the gut microbiome could contribute to the development of localized differences in microbiome composition, population health and diet through spatial clustering of relatives.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Phascolarctidae , Animals , Cellulose , Feces/microbiology , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Phascolarctidae/microbiology
6.
Environ Microbiol ; 24(1): 475-493, 2022 01.
Article in English | MEDLINE | ID: mdl-34863030

ABSTRACT

The acquisition and maturation of the gastrointestinal microbiome is a crucial aspect of mammalian development, particularly for specialist herbivores such as the koala (Phascolarctos cinereus). Joey koalas are thought to be inoculated with microorganisms by feeding on specialized maternal faeces (pap). We found that compared to faeces, pap has higher microbial density, higher microbial evenness and a higher proportion of rare taxa, which may facilitate the establishment of those taxa in joey koalas. We show that the microbiomes of captive joey koalas were on average more similar to those of their mothers than to other koalas, indicating strong maternal inheritance of the faecal microbiome, which can lead to intergenerational gut dysbiosis when the mother is ill. Directly after pap feeding, the joey koalas' microbiomes were enriched for milk-associated bacteria including Bacteroides fragilis, suggesting a conserved role for this species across mammalian taxa. The joeys' microbiomes then changed slowly over 5 months to resemble those of adults by 1 year of age. The relative abundance of fibrolytic bacteria and genes involved in the degradation of plant cell walls also increased in the infants over this time, likely in response to an increased proportion of Eucalyptus leaves in their diets.


Subject(s)
Eucalyptus , Gastrointestinal Microbiome , Microbiota , Phascolarctidae , Animals , Gastrointestinal Microbiome/genetics , Humans , Maternal Inheritance , Microbiota/genetics , Phascolarctidae/metabolism , Phascolarctidae/microbiology
7.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34493581

ABSTRACT

Koala populations are currently in rapid decline across Australia, with infectious diseases being a contributing cause. The koala retrovirus (KoRV) is a gammaretrovirus present in both captive and wild koala colonies that presents an additional challenge for koala conservation in addition to habitat loss, climate change, and other factors. Currently, nine different subtypes (A to I) have been identified; however, KoRV genetic diversity analyses have been limited. KoRV is thought to be exogenously transmitted between individuals, with KoRV-A also being endogenous and transmitted through the germline. The mechanisms of exogenous KoRV transmission are yet to be extensively investigated. Here, deep sequencing was employed on 109 captive koalas of known pedigree, housed in two institutions from Southeast Queensland, to provide a detailed analysis of KoRV transmission dynamics and genetic diversity. The final dataset included 421 unique KoRV sequences, along with the finding of an additional subtype (KoRV-K). Our analysis suggests that exogenous transmission of KoRV occurs primarily between dam and joey, with evidence provided for multiple subtypes, including nonendogenized KoRV-A. No evidence of sexual transmission was observed, with mating partners found to share a similar number of sequences as unrelated koala pairs. Importantly, both distinct captive colonies showed similar trends. These findings indicate that breeding strategies or antiretroviral treatment of females could be employed as effective management approaches in combating KoRV transmission.


Subject(s)
Genetic Variation/genetics , Retroviridae Infections/transmission , Retroviridae Infections/virology , Retroviridae/genetics , Animals , Evolution, Molecular , Female , Male , Phascolarctidae , Queensland
8.
Oecologia ; 196(3): 795-803, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34142232

ABSTRACT

The diets of individual animals within populations can differ, but few studies determine whether this is due to fundamental differences in preferences or capacities to eat specific foods, or to external influences such as dominance hierarchies or spatial variation in food availability. The distinction is important because different drivers of dietary specialisation are likely to have different impacts on the way in which animal populations respond to, for example, habitat modification. We used a captive feeding study to investigate the mechanisms driving individual dietary specialisation in a population of wild koalas (Phascolarctos cinereus) in which individuals predominantly ate either Eucalyptus viminalis or Eucalyptus obliqua foliage. All six koalas that primarily ate E. viminalis in the wild avoided eating E. obliqua for more than 1 month in captivity. In contrast, all seven koalas that primarily ate E. obliqua could be maintained exclusively on this species in captivity, although they ate less from individual trees with higher foliar concentrations of unsubstituted B-ring flavanones (UBFs). Our results show that fundamental differences between individual animals allow some to exploit food resources that are less suitable for others. This could reduce competition for food, increase habitat carrying capacity, and is also likely to buffer the population against extinction in the face of habitat modification. The occurrence of fundamental individual specialisation within animal populations could also affect the perceived conservation value of different habitats, translocation or reintroduction success, and population dynamics. It should therefore be further investigated in other mammalian herbivore species.


Subject(s)
Eucalyptus , Phascolarctidae , Animals , Diet , Ecosystem , Trees
9.
PeerJ ; 7: e6534, 2019.
Article in English | MEDLINE | ID: mdl-30972242

ABSTRACT

BACKGROUND: The diet of the koala (Phascolarctos cinereus) is comprised almost exclusively of foliage from the genus Eucalyptus (family Myrtaceae). Eucalyptus produces a wide variety of potentially toxic plant secondary metabolites which have evolved as chemical defences against herbivory. The koala is classified as an obligate dietary specialist, and although dietary specialisation is rare in mammalian herbivores, it has been found elsewhere to promote a highly-conserved but low-diversity gut microbiome. The gut microbes of dietary specialists have been found sometimes to enhance tolerance of dietary PSMs, facilitating competition-free access to food. Although the koala and its gut microbes have evolved together to utilise a low nutrient, potentially toxic diet, their gut microbiome has not previously been assessed in conjunction with diet quality. Thus, linking the two may provide new insights in to the ability of the koala to extract nutrients and detoxify their potentially toxic diet. METHOD: The 16S rRNA gene was used to characterise the composition and diversity of faecal bacterial communities from a wild koala population (n = 32) comprising individuals that predominately eat either one of two different food species, one the strongly preferred and relatively nutritious species Eucalyptus viminalis, the other comprising the less preferred and less digestible species Eucalyptus obliqua. RESULTS: Alpha diversity indices indicated consistently and significantly lower diversity and richness in koalas eating E. viminalis. Assessment of beta diversity using both weighted and unweighted UniFrac matrices indicated that diet was a strong driver of both microbial community structure, and of microbial presence/absence across the combined koala population and when assessed independently. Further, principal coordinates analysis based on both the weighted and unweighted UniFrac matrices for the combined and separated populations, also revealed a separation linked to diet. During our analysis of the OTU tables we also detected a strong association between microbial community composition and host diet. We found that the phyla Bacteroidetes and Firmicutes were co-dominant in all faecal microbiomes, with Cyanobacteria also co-dominant in some individuals; however, the E. viminalis diet produced communities dominated by the genera Parabacteroides and/or Bacteroides, whereas the E. obliqua-associated diets were dominated by unidentified genera from the family Ruminococcaceae. DISCUSSION: We show that diet differences, even those caused by differential consumption of the foliage of two species from the same plant genus, can profoundly affect the gut microbiome of a specialist folivorous mammal, even amongst individuals in the same population. We identify key microbiota associated with each diet type and predict functions within the microbial community based on 80 previously identified Parabacteroides and Ruminococcaceae genomes.

10.
Anim Microbiome ; 1(1): 6, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-33499955

ABSTRACT

BACKGROUND: Differences between individuals in their gastrointestinal microbiomes can lead to variation in their ability to persist on particular diets. Koalas are dietary specialists, feeding almost exclusively on Eucalyptus foliage but many individuals will not feed on particular Eucalyptus species that are adequate food for other individuals, even when facing starvation. We undertook a faecal inoculation experiment to test whether a koala's gastrointestinal (GI) microbiome influences their diet. Wild-caught koalas that initially fed on the preferred manna gum (Eucalyptus viminalis) were brought into captivity and orally inoculated with encapsulated material derived from faeces from koalas feeding on either the less preferred messmate (E. obliqua; treatment) or manna gum (control). RESULTS: The gastrointestinal microbiomes of wild koalas feeding primarily on manna gum were distinct from those feeding primarily on messmate. We found that the gastrointestinal microbiomes of koalas were unresponsive to dietary changes because the control koalas' GI microbiomes did not change even when the nocturnal koalas were fed exclusively on messmate overnight. We showed that faecal inoculations can assist the GI microbiomes of koalas to change as the treatment koalas' GI microbiomes became more similar to those of wild koalas feeding on messmate. There was no overall difference between the control and treatment koalas in the quantity of messmate they consumed. However, the greater the change in the koalas' GI microbiomes, the more messmate they consumed after the inoculations had established. CONCLUSIONS: The results suggest that dietary changes can only lead to changes in the GI microbiomes of koalas if the appropriate microbial species are present, and/or that the koala gastrointestinal microbiome influences diet selection.

11.
Environ Microbiol ; 20(4): 1350-1361, 2018 04.
Article in English | MEDLINE | ID: mdl-29266683

ABSTRACT

To investigate the factors determining the clonal composition of Escherichia coli in poultry meat samples, 306 samples were collected from 16 shops, representing three supermarket chains and an independent butchery located in each of the four town centers of Canberra, Australia, during the summer, autumn and winter. A total of 3415 E. coli isolates were recovered and assigned to a phylogenetic group using the Clermont quadruplex PCR method, fingerprinted using repetitive element palindromic (REP) PCR and screened for their antimicrobial susceptibility profiles. The probability of detecting E. coli and the number of fingerprint types detected per sample, as well as the phylogroup membership of the isolates and their antimicrobial sensitivity profiles varied, with one or more of retailer, store, meat type, season and husbandry. The results of this study demonstrate that poultry meat products are likely to be contaminated with a genetically diverse community of E. coli and suggest that factors relating to the nature of the meat product and distribution chain are determinants of the observed diversity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli Infections/veterinary , Escherichia coli , Meat/microbiology , Poultry/microbiology , Animals , Australia , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Food Contamination/analysis , Food Microbiology , Genetic Variation , Microbial Sensitivity Tests , Phylogeny
12.
PLoS One ; 12(1): e0169445, 2017.
Article in English | MEDLINE | ID: mdl-28107364

ABSTRACT

Escherichia coli, is intimately associated with both human health and water sanitation. E. coli isolates from water can either be (i) host associated commensals, indicating recent faecal contamination; (ii) diarrheal pathogens or (iii) extra-intestinal pathogens that pose a direct health risk; or (iv) free-living. In this study we genetically characterised 28 E. coli isolates obtained from treated drinking water in south eastern Australia to ascertain their likely source. We used full genome sequencing to assign the isolates to their phylogenetic group and multi-locus sequence type. The isolates were also screened in silico for several virulence genes and genes involved in acquired antibiotic resistance. The genetic characteristics of the isolates indicated that four isolates were likely human pathogens. However, these isolates were not detected in sufficient numbers to present a health risk to the public. An additional isolate was a human associated strain. Nine isolates were water associated free-living strains that were unlikely to pose a health risk. Only 14% of the isolates belonged to the host associated phylogenetic group (B2) and only a single isolate had any antibiotic resistance genes. This suggests that the primary source of the drinking water E. coli isolates may not have been recent human faecal contamination.


Subject(s)
Drinking Water/microbiology , Escherichia coli/genetics , Genes, Bacterial , Australia , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Microbial Sensitivity Tests , Phylogeny , Virulence/genetics
13.
Mol Ecol ; 24(15): 3831-45, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26089175

ABSTRACT

Ecological disturbance and climate are key drivers of temporal dynamics in the demography and genetic diversity of natural populations. Microscale refuges are known to buffer species' persistence against environmental change, but the effects of such refuges on demographic and genetic patterns in response to short-term environmental variation are poorly understood. We quantified demographic and genetic responses of mountain brushtail possums (Trichosurus cunninghami) to rainfall variability (1992-2013) and to a major wildfire. We hypothesized that there would be underlying differences in demographic and genetic processes between an unburnt mesic refuge and a topographically exposed zone that was burnt in 2009. Fire caused a 2-year decrease in survival in the burnt zone, but the population grew after the fire due to immigration, leading to increased expected heterozygosity. We documented a fire-related behavioural shift, where the rate of movement by individuals in the unburnt refuge to the burnt zone decreased after fire. Irrespective of the fire, there were long-term differences in demographic and genetic parameters between the mesic/unburnt refuge and the nonmesic/burnt zone. Survival was high and unaffected by rainfall in the refuge, but lower and rainfall-dependent in the nonmesic zone. Net movement of individuals was directional, from the mesic refuge to the nonmesic zone, suggesting fine-scale source-sink dynamics. There were higher expected heterozygosity (HE ) and temporal genetic stability in the refuge, but lower HE and marked temporal genetic structure in the exposed habitat, consistent with reduced generational overlap caused by elevated mortality and immigration. Thus, fine-scale refuges can mediate the short-term demographic and genetic effects of climate and ecological disturbance.


Subject(s)
Climate , Ecosystem , Trichosurus/genetics , Animals , Disasters , Fires , Genetic Variation , Genotype , Molecular Sequence Data , Population Density , Population Dynamics , Rain , Victoria
14.
Appl Environ Microbiol ; 81(15): 5123-33, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26002899

ABSTRACT

The manner and extent to which birds associate with humans may influence the genetic attributes and antimicrobial resistance of their commensal Escherichia communities through strain transmission and altered selection pressures. In this study, we determined whether the distribution of the different Escherichia coli phylogenetic groups and cryptic clades, the occurrence of 49 virulence associated genes, and/or the prevalence of resistance to 12 antimicrobials differed between four groups of birds from Australia with contrasting types of human association. We found that birds sampled in suburban and wilderness areas had similar Escherichia communities. The Escherichia communities of backyard domestic poultry were phylogenetically distinct from the Escherichia communities sourced from all other birds, with a large proportion (46%) of poultry strains belonging to phylogenetic group A and a significant minority (17%) belonging to the cryptic clades. Wild birds sampled from veterinary and wildlife rehabilitation centers (in-care birds) carried Escherichia isolates that possessed particular virulence-associated genes more often than Escherichia isolates from birds sampled in suburban and wilderness areas. The Escherichia isolates from both the backyard poultry and in-care birds were more likely to be multidrug resistant than the Escherichia isolates from wild birds. We also detected a multidrug-resistant E. coli strain circulating in a wildlife rehabilitation center, reinforcing the importance of adequate hygiene practices when handling and caring for wildlife. We suggest that the relatively high frequency of antimicrobial resistance in the in-care birds and backyard poultry is due primarily to the use of antimicrobials in these animals, and we recommend that the treatment protocols used for these birds be reviewed.


Subject(s)
Birds/microbiology , Carrier State/veterinary , Drug Resistance, Bacterial , Escherichia coli Infections/veterinary , Escherichia coli/classification , Escherichia coli/genetics , Genetic Variation , Animals , Anti-Bacterial Agents/pharmacology , Australia/epidemiology , Carrier State/epidemiology , Carrier State/microbiology , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Genotype , Humans , Molecular Epidemiology , Phylogeny , Virulence Factors/genetics
15.
Mol Ecol ; 24(8): 1681-95, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25761248

ABSTRACT

Natal sex-biased dispersal has long been thought to reduce the risk of inbreeding by spatially separating opposite-sexed kin. Yet, comprehensive and quantitative evaluations of this hypothesis are lacking. In this study, we quantified the effectiveness of sex-biased dispersal as an inbreeding avoidance strategy by combining spatially explicit simulations and empirical data. We quantified the extent of kin clustering by measuring the degree of spatial autocorrelation among opposite-sexed individuals (FM structure). This allowed us to systematically explore how the extent of sex-biased dispersal, generational overlap, and mate searching distance, influenced both kin clustering, and the resulting inbreeding in the absence of complementary inbreeding avoidance strategies. Simulations revealed that when sex-biased dispersal was limited, positive FM genetic structure developed quickly and increased as the mate searching distance decreased or as generational overlap increased. Interestingly, complete long-range sex-biased dispersal did not prevent the development of FM genetic structure when generations overlapped. We found a very strong correlation between FM genetic structure and both FIS under random mating, and pedigree-based measures of inbreeding. Thus, we show that the detection of FM genetic structure can be a strong indicator of inbreeding risk. Empirical data for two species with different life history strategies yielded patterns congruent with our simulations. Our study illustrates a new application of spatial genetic autocorrelation analysis that offers a framework for quantifying the risk of inbreeding that is easily extendable to other species. Furthermore, our findings provide other researchers with a context for interpreting observed patterns of opposite-sexed spatial genetic structure.


Subject(s)
Animal Distribution , Genetics, Population , Inbreeding , Sexual Behavior, Animal , Animals , Female , Male , Models, Genetic , Trichosurus/genetics
16.
Environ Microbiol Rep ; 7(3): 583-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25755078

ABSTRACT

The probability of detecting Escherichia coli varies between host species with different diets and body sizes. An experimental study that mimicked the effect of different carnivore body masses found that digesta transit times influence E. coli abundance. In this study, we investigated how the host's gastrointestinal dynamics affected E. coli abundance and genotype in a system that reflected an herbivorous host. Forty rats from nine litters were fed a diet high in fermentable fibre. We found a small effect of fibre concentration on the difference between the liquid and particle digesta retention times. However, the rats' litter membership explained the majority of the retention time differences (79%). In turn, we found that as the difference between liquid and particle retention times increased, E. coli faecal cell densities decreased, while the likelihood that an animal's dominant E. coli strain possessed a gene involved in adhesion (agn43) increased. Thus, this experiment revealed an unanticipated high degree of association between the hosts' litter, their gastrointestinal dynamics and the E. coli genotypes. Furthermore, by comparing our findings to previous work, we show that the presence of fermentable fibre in the diet appears to change the relationship between the host's phenotype and E. coli.


Subject(s)
Bacterial Adhesion , Bacterial Load , Escherichia coli/physiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiology , Gastrointestinal Transit , Genotype , Animals , Escherichia coli/genetics , Escherichia coli/growth & development , Rats
17.
Ecol Lett ; 17(8): 970-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24861219

ABSTRACT

The specific processes that facilitate pathogen transmission are poorly understood, particularly for wild animal populations. A major impediment for investigating transmission pathways is the need for simultaneous information on host contacts and pathogen transfer. In this study, we used commensal Escherichia coli strains as a model system for gastrointestinal pathogens. We combined strain-sharing information with detailed host contact data to investigate transmission routes in mountain brushtail possums. Despite E. coli being transmitted via the faecal-oral route, we revealed that, strain-sharing among possums was better explained by host contacts than spatial proximity. Furthermore, and unexpectedly, strain-sharing was more strongly associated with the duration of brief nocturnal associations than day-long den-sharing. Thus, the most cryptic and difficult associations to measure were the most relevant connections for the transmission of this symbiont. We predict that future studies that employ similar approaches will reveal the importance of previously overlooked associations as key transmission pathways.


Subject(s)
Escherichia coli Infections/transmission , Escherichia coli/physiology , Host-Pathogen Interactions/physiology , Models, Biological , Social Behavior , Trichosurus/microbiology , Animals , Animals, Wild/microbiology , Seasons
18.
Environ Microbiol Rep ; 6(6): 605-10, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25756113

ABSTRACT

Escherichia coli can be divided into several distinct phylogenetic groups that differ in their capacity to cause disease. However, what drives the relative abundance of these different phylogenetic groups in the commensal intestinal community of humans is poorly understood. This study investigated how host age and sex influences E. coli community structure in humans. Faecal samples were collected from 205 outpatients in Australia. Different strains within each sample were identified using rep-PCR profiles and their phylogenetic group membership was determined by quadruplex PCR. Female individuals carrying a dominant B2 strain were found to possess fewer strains than those carrying dominant A or B1 strains. Additionally, strains from the same phylogenetic group were more likely to co-occur in females. By contrast, strain diversity and phylogenetic group associations did not differ significantly from random in males. Host age was found to have a significant effect on the phylogenetic group of the dominant strain. Together these findings indicate that the distribution of the different phylogenetic groups within the human intestinal tract may be mediated by a complex interaction between the host environment and the competitive interactions between strains.


Subject(s)
Escherichia coli/genetics , Escherichia coli/isolation & purification , Feces/microbiology , Intestines/microbiology , Phylogeny , Adolescent , Adult , Age Factors , Aged , Biodiversity , Child , Child, Preschool , Escherichia coli/classification , Female , Humans , Infant , Male , Middle Aged , Sex Factors , Young Adult
19.
Mol Ecol ; 22(15): 4112-22, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23786329

ABSTRACT

The selective pressures that determine genotype abundance and distribution frequently vary between ecological levels. Thus, it is often unclear whether the same functional genotypes will become abundant at different levels and how selection acting at these different scales is linked. In this study, we examined whether particular functional genotypes, defined by the presence or absence of 34 genes, of commensal Escherichia coli strains were associated with within-host abundance and/or host population abundance in a wild population of 54 adult mountain brushtail possums (Trichosurus cunninghami). Our results revealed that there was a positive correlation between a strain's relative abundance within individuals and the strain's abundance in the host population. We also found that strain abundance at both ecological levels was predicted by the same group of functional genes (agn43, focH, micH47, iroN, ygiL, ompT, kspmT2 and K1) that had associated patterns of occurrence. We propose that direct selection on the same functional genes at both levels may in part be responsible for the observed correlation between the ecological levels. However, a potential link between abundance within the host and excretion rate may also contribute.


Subject(s)
Escherichia coli/genetics , Trichosurus/microbiology , Animals , Escherichia coli/classification , Feces/microbiology , Gene Frequency , Genotype , Host-Pathogen Interactions/genetics , Selection, Genetic
20.
Environ Microbiol ; 15(8): 2162-72, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23414000

ABSTRACT

Although Escherichia coli is an important model organism for bacterial research, few studies have explored the nature of temporal variation in E. coli strains within the intestinal tracts of host individuals. In this study the E. coli strains of 54 mountain brushtail possums were sampled on four occasions during a year. This allowed temporal changes to be quantified both at the host population level and within individuals. Escherichia coli strains were identified using a combination of rep-PCR profiles from two primers (CGG and ERIC) and phylogenetic group assigned by quadruplex PCR. The study revealed considerable changes in community structure within individuals among all time periods. In fact, temporal variation within individuals accounted for more of the variation in E. coli community structure than differences between animals. In contrast to the within-host dynamics, there were no significant differences among the time periods at the host population level. It was also found that there was no effect of host age or sex on strain community structure within host individuals. These findings highlight the importance of temporal variation in the ecology of E. coli, while the methods applied in this study may serve as a foundation for further work in this area.


Subject(s)
Biodiversity , Escherichia coli/physiology , Trichosurus/microbiology , Animals , Australia , Escherichia coli/classification , Escherichia coli/genetics , Female , Humans , Intestines/microbiology , Linear Models , Male , Polymerase Chain Reaction , Symbiosis/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...