Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36674995

ABSTRACT

Lignin degradation is an effective means of achieving the high-value application of lignin, but degradation usually requires the use of high temperatures and harsh reaction-conditions. This study describes a green, mild approach for the degradation of lignin, in which chlorine dioxide (ClO2) was used for the oxidative degradation of lignin (IL) in an acidic aqueous suspension at room temperature. The optimal process conditions were: 30 mL of ClO2 solution (2.5 mg·L-1), pH 4.5 and 3 h. The FT-IR, NMR (1H NMR, 2D-HSQC and 31P NMR), XPS and GPC analyses indicated that lignin could be degraded by ClO2 relatively well at room temperature, to form quinones and muconic acids. Additionally, DIL was reduced to substances with a high phenolic-hydroxyl (OH) content (RDIL) under the presence of NaBH4, which further confirmed the composition of DIL and which can be applied to the development of lignin-based phenolic resins, providing a reference for the further modification as well as the utilization of DIL.


Subject(s)
Lignin , Oxides , Lignin/metabolism , Temperature , Spectroscopy, Fourier Transform Infrared , Chlorine
2.
Sci Rep ; 10(1): 12082, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32694665

ABSTRACT

A novel eco-friendly halogen-free cardanol-based flame retardant with P, Si, and N on the chain backbone (PSNCFR) was synthesized and incorporated into phenolic foams (PFs). PSNCFR was comprehensively investigated via Fourier transform infrared spectroscopy and nuclear magnetic resonance. PSNCFR endowed PFs with flame retardancy, contributed to generating a composite char defense against flames, and efficiently prevented smoking from PFs. PSNCFR introduction improved the flexural strength of the PFs to approximately 155% of that of pristine PF. PSNCFR-modified PFs displayed a high limiting oxygen index value of 41.9%. The results of cone calorimeter show that the mean heat release rate, mean effective heat of combustion, and total heat release of the PSNCFR-modified PFs reduced by 26.92%, 35.71%, and 31.25%, respectively. In particular, the total smoke production of the PSNCFR-modified PFs decreased by 64.55%, indicating excellent smoke inhibition. As for the mechanism, the condensation and gas phases during pyrolysis were responsible for the synergistic flame retardancy in the modified PFs. The findings demonstrate that PSNCFR can be used in PF preparation to overcome their drawbacks of internal brittleness and flammability.

3.
ACS Omega ; 4(7): 12505-12511, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460370

ABSTRACT

A novel UV-curable polyurethane acrylate (PUA) oligomer was synthesized by modifying cardanol with a polyfunctional acrylate precursor obtained through reacting pentaerythritol triacrylate with isophoronediisocyanate. Chemical structures of the obtained cardanol-based PUA (C-PUA) oligomer were confirmed by Fourier transform infrared and 1H NMR. Subsequently, viscosity and gel content of the C-PUA resins containing different quantities of hydroxymethyl methacrylate (HEMA) were characterized. The C-PUA oligomer possessed a viscosity of 8360 mPa s, which reduced to 115 mPa s when 40% of the HEMA diluent was added. Furthermore, thermal, mechanical, coating, and swelling properties of the resulting UV-cured C-PUA/HEMA materials were investigated. The ultimate biomaterials showed excellent performance, including a glass transition temperature (T g) of 74-123 °C, maximum thermal degradation temperature of 437-441 °C, tensile strength of 12.4-32.0 MPa, tensile modulus of 107.2-782.7 MPa, and coating adhesion of 1-2. In conclusion, the developed C-PUA resins show great potential to be applied in UV-curable materials like coatings.

4.
Polymers (Basel) ; 11(1)2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30960030

ABSTRACT

A phosphorus-containing tung oil-based polyol (PTOP) and a silicon-containing tung oil-based polyol (PTOSi) were each efficiently prepared by attaching 9,10-dihydro-9-oxa-10-phosphaphenanthrene (DOPO) and dihydroxydiphenylsilane (DPSD) directly, respectively, to the epoxidized monoglyceride of tung oil (EGTO) through a ring-opening reaction. The two new polyols were used in the formation of rigid polyurethane foam (RPUF), which displayed great thermal stability and excellent flame retardancy performance. The limiting oxygen index (LOI) value of RPUF containing 80 wt % PTOP and 80 wt % PTOSi was 24.0% and 23.4%, respectively. Fourier transfer infrared (FTIR), Nuclear Magnetic Resonance (NMR) and thermogravimetric (TG) analysis revealed that DOPO and DPSD are linked to EGTO by a covalent bond. Interestingly, PTOP and PTOSi had opposite effects on Tg and the compressive strength of RPUF, where, with the appropriate loading, the compressive strengths were 0.82 MPa and 0.25 MPa, respectively. At a higher loading of PTOP and PTOSi, the thermal conductivity of RPUF increased while the RPUF density decreased. The scanning electron microscope (SEM) micrographs showed that the size and closed areas of the RPUF cells were regular. SEM micrographs of the char after combustion showed that the char layer was compact and dense. The enhanced flame retardancy of RPUF resulted from the barrier effect of the char layer, which was covered with incombustible substance.

SELECTION OF CITATIONS
SEARCH DETAIL
...