Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(8): e18800, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37560692

ABSTRACT

Aluminum salts are by far the most widely used adjuvants for human vaccines, showing acceptable safety and efficacy. Previous studies have shown that each aluminum adjuvant have different charges and morphologies, but whether the manufacturing and production processes affects the physicochemical properties of aluminum adjuvant has not yet been reported. In this study, we explored the physical and chemical properties of different aluminum adjuvants and Hib, sIPV antigens through particle size, zeta potential and morphological characteristics. The adsorption rate and efficacy were also investigated. The results showed that the preparation process had an impact on the physical and chemical properties of aluminum adjuvants, including differences in the particle size,zeta potential and morphological structure. Hib vaccine had larger particle size than sIPV vaccine with different aluminum adjuvants in the process of vaccine preparation. In addition, by measuring the adsorption rate, increasing the concentration of phosphate or Aluminum phosphate (AP) can improve the adsorption rate of Hib, but Aluminium hydroxide (AH) and amorphous aluminum hydroxyphosphate sulfate (AAHS) adjuvants are not affected. In vivo result showed that increasing the adsorption rate of Hib could enhance the Hib-IgG antibody titers. In conclusion, this study provides a reference for the application of adjuvants in vaccines by studying the physicochemical properties and adsorption conditions of different aluminum adjuvants and antigens.

2.
Sci Rep ; 12(1): 20161, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36424406

ABSTRACT

Bioreactors are one of the most important, basic pieces of equipment in the biopharmaceutical industry. Understanding the effects of mechanical damage and other factors on the physiological state of cells during cell matrix culture is the basis for continuously achieving greater efficiency and higher product quality. In this study, Vero cells were used as a model and apoptosis, senescence, transcriptomics, proteomics, and metabolomics were carried out for analysis at the cellular and molecular levels. The results showed that compared with cells cultured in the simulated natural state, the cells cultured in the basket bioreactor displayed no obvious senescence. Additionally, the proportion of early apoptotic cells increased, but the proportions of damaged, late apoptotic and dead cells did not change significantly. The transcription levels of aminoacyl-tRNA synthetase and cyclin D1 and the expression levels of DNA replication licensing factor, methenyltetrahydrofolate cyclohydrolase, arachidonic acid and other metabolites of cells cultured in the basket bioreactor were significantly increased. These results suggest that DNA replication, protein translation and the metabolic activities in cells cultured in basket bioreactors are more active, which is more conducive to cell amplification and target product production. In this study, the growth and physiological state of cells in a basket bioreactor were characterized at the molecular level for the first time. Additionally, a tool to evaluate the physiological state of cells in a bioreactor was established, which can be used to guide the development and optimization of cell matrix culture conditions in industrial production and improve the production efficiency of the target products.


Subject(s)
Bioreactors , Cell Culture Techniques , Animals , Chlorocebus aethiops , Vero Cells , Cell Culture Techniques/methods , Metabolomics , Industry
3.
J Exp Bot ; 72(12): 4577-4589, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33830198

ABSTRACT

Leaf senescence can be triggered by multiple abiotic stresses including darkness, nutrient limitation, salinity, and drought. Recently, heatwaves have been occurring more frequently, and they dramatically affect plant growth and development. However, the underlying molecular networks of heat stress-induced leaf senescence remain largely uncharacterized. Here we showed that PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 proteins could efficiently promote heat stress-induced leaf senescence in Arabidopsis. Transcriptomic profiling analysis revealed that PIF4 and PIF5 are likely to function through multiple biological processes including hormone signaling pathways. Further, we characterized NAC019, SAG113, and IAA29 as direct transcriptional targets of PIF4 and PIF5. The transcription of NAC019, SAG113, and IAA29 changes significantly in daytime after heat treatment. In addition, we demonstrated that PIF4 and PIF5 proteins were accumulated during the recovery after heat treatment. Moreover, we showed that heat stress-induced leaf senescence is gated by the circadian clock, and plants might be more actively responsive to heat stress-induced senescence during the day. Taken together, our findings proposed important roles for PIF4 and PIF5 in mediating heat stress-induced leaf senescence, which may help to fully illustrate the molecular network of heat stress-induced leaf senescence in higher plants and facilitate the generation of heat stress-tolerant crops.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Heat-Shock Response , Light , Phytochrome/metabolism
4.
Nucleic Acids Res ; 49(7): 3764-3780, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33675668

ABSTRACT

Molecular bases of eukaryotic circadian clocks mainly rely on transcriptional-translational feedback loops (TTFLs), while epigenetic codes also play critical roles in fine-tuning circadian rhythms. However, unlike histone modification codes that play extensive and well-known roles in the regulation of circadian clocks, whether DNA methylation (5mC) can affect the circadian clock, and the associated underlying molecular mechanisms, remains largely unexplored in many organisms. Here we demonstrate that global genome DNA hypomethylation can significantly lengthen the circadian period of Arabidopsis. Transcriptomic and genetic evidence demonstrate that SUPPRESSOR OF drm1 drm2 cmt3 (SDC), encoding an F-box containing protein, is required for the DNA hypomethylation-tuned circadian clock. Moreover, SDC can physically interact with another F-box containing protein ZEITLUPE (ZTL) to diminish its accumulation. Genetic analysis further revealed that ZTL and its substrate TIMING OF CAB EXPRESSION 1 (TOC1) likely act downstream of DNA methyltransferases to control circadian rhythm. Together, our findings support the notion that DNA methylation is important to maintain proper circadian pace in Arabidopsis, and further established that SDC links DNA hypomethylation with a proteolytic cascade to assist in tuning the circadian clock.


Subject(s)
Arabidopsis Proteins/metabolism , DNA Methylation , DNA, Plant/chemistry , F-Box Proteins/metabolism , Arabidopsis , Circadian Clocks , Circadian Rhythm , Transcription Factors/metabolism
5.
Int J Mol Sci ; 20(21)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31652760

ABSTRACT

Circadian clock not only functions as a cellular time-keeping mechanism, but also acts as a master regulator to coordinate the tradeoff between plant growth and defense in higher plants by timing a few kinds of phytohormone biosynthesis and signaling, including jasmonic acid (JA). Notably, circadian clock and JA pathway have recently been shown to intertwine with each other to ensure and optimize the plant fitness in an ever-changing environment. It has clearly demonstrated that there are multiple crosstalk pathways between circadian clock and JA at both transcriptional and post-transcriptional levels. In this scenario, circadian clock temporally modulates JA-mediated plant development events, herbivory resistance and susceptibility to pathogen. By contrast, the JA signaling regulates clock activity in a feedback manner. In this review, we summarized the cross networks between circadian clock and JA pathway at both transcriptional and post-transcriptional levels. We proposed that the novel crosstalks between circadian clock and JA pathway not only benefit for the understanding the JA-associated circadian outputs including leaf senescence, biotic, and abiotic defenses, but also put timing as a new key factor to investigate JA pathway in the future.


Subject(s)
Circadian Clocks , Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Development , Plant Immunity , Adaptation, Physiological
6.
Appl Biochem Biotechnol ; 181(1): 32-47, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27457759

ABSTRACT

Termites are well recognized for their thriving on recalcitrant lignocellulosic diets through nutritional symbioses with gut-dwelling microbiota; however, the effects of diet changes on termite gut microbiota are poorly understood, especially for the lower termites. In this study, we employed high-throughput 454 pyrosequencing of 16S V1-V3 amplicons to compare gut microbiotas of Tsaitermes ampliceps fed with lignin-rich and lignin-poor cellulose diets after a 2-week-feeding period. As a result, the majority of bacterial taxa were shared across the treatments with different diets, but their relative abundances were modified. In particular, the relative abundance was reduced for Spirochaetes and it was increased for Proteobacteria and Bacteroides by feeding the lignin-poor diet. The evenness of gut microbiota exhibited a significant difference in response to the diet type (filter paper diets < corn stover diets < wood diets), while their richness was constant, which may be related to the lower recalcitrance of this biomass to degradation. These results have important implications for sampling and analysis strategies to probe the lignocellulose degradation features of termite gut microbiota and suggest that the dietary lignocellulose composition could cause shifting rapidly in the termite gut microbiota.


Subject(s)
Gastrointestinal Microbiome/genetics , Isoptera/microbiology , Lignin/metabolism , RNA, Ribosomal, 16S/genetics , Animals , Bacteroides/drug effects , Bacteroides/genetics , Diet , High-Throughput Nucleotide Sequencing , Isoptera/genetics , Isoptera/metabolism , Lignin/pharmacology , Proteobacteria/drug effects , Proteobacteria/genetics , Spirochaetales/drug effects , Spirochaetales/genetics , Symbiosis/drug effects , Symbiosis/genetics
7.
Ecol Evol ; 6(22): 8235-8242, 2016 11.
Article in English | MEDLINE | ID: mdl-27878091

ABSTRACT

Termites are considered among the most efficient bioreactors, with high capacities for lignocellulose degradation and utilization. Recently, several studies have characterized the gut microbiota of diverse termites. However, the temporal dynamics of the gut microbiota within a given termite with dietary diversity are poorly understood. Here, we employed 16S rDNA barcoded pyrosequencing analysis to investigate temporal changes in bacterial diversity and richness of the gut microbiota of wood-feeding higher termite Mironasutitermes shangchengensis under three lignocellulose content-based diets that feature wood, corn stalks, and filter paper. Compositions of the predominant termite gut residents were largely constant among the gut microbiomes under different diets, but each diet caused specific changes in the bacterial composition over time. Notably, microbial communities exhibited an unexpectedly strong resilience during continuous feeding on both corn stalks and filter paper. Members of five bacterial phyla, that is, Spirochaetes, Firmicutes, Actinobacteria, Tenericutes, and Acidobacteria, were strongly associated with the resilience. These findings provide insights into the stability of the gut microbiota in higher termites and have important implications for the future design of robust bioreactors for lignocellulose degradation and utilization.

8.
Int J Oral Sci ; 8(3): 182-90, 2016 09 29.
Article in English | MEDLINE | ID: mdl-27680288

ABSTRACT

Oral rinses containing chemotherapeutic agents, such as cetylpyridinium chloride (CPC), can alleviate plaque-induced gingival infections, but how oral microbiota respond to these treatments in human population remains poorly understood. Via a double-blinded, randomised controlled trial of 91 subjects, the impact of CPC-containing oral rinses on supragingival plaque was investigated in experimental gingivitis, where the subjects, after a 21-day period of dental prophylaxis to achieve healthy gingivae, received either CPC rinses or water for 21 days. Within-subject temporal dynamics of plaque microbiota and symptoms of gingivitis were profiled via 16S ribosomal DNA gene pyrosequencing and assessment with the Mazza gingival index. Cetylpyridinium chloride conferred gingival benefits, as progression of gingival inflammation resulting from a lack of dental hygiene was significantly slower in the mouth rinse group than in the water group due to inhibition of 17 gingivitis-enriched bacterial genera. Tracking of plaque α and ß diversity revealed that CPC treatment prevents acquisition of new taxa that would otherwise accumulate but maintains the original biodiversity of healthy plaques. Furthermore, CPC rinses reduced the size, local connectivity and microbiota-wide connectivity of the bacterial correlation network, particularly for nodes representing gingivitis-enriched taxa. The findings of this study provide mechanistic insights into the impact of oral rinses on the progression and maturation of dental plaque in the natural human population.


Subject(s)
Anti-Infective Agents, Local/therapeutic use , Cetylpyridinium/therapeutic use , Dental Plaque/drug therapy , Gingivitis/drug therapy , Mouthwashes/therapeutic use , Adolescent , Adult , Dental Plaque/microbiology , Dental Plaque Index , Double-Blind Method , Female , Humans , Male , Middle Aged , Periodontal Index , RNA, Ribosomal, 16S , Young Adult
9.
Sci Rep ; 6: 24705, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27094556

ABSTRACT

Plaque-induced gingivitis can be alleviated by various treatment regimens. To probe the impacts of various anti-gingivitis treatments on plaque microflora, here a double blinded, randomized controlled trial of 91 adults with moderate gingivitis was designed with two anti-gingivitis regimens: the brush-alone treatment and the brush-plus-rinse treatment. In the later group, more reduction in both Plaque Index (TMQHI) and Gingival Index (mean MGI) at Day 3, Day 11 and Day 27 was evident, and more dramatic changes were found between baseline and other time points for both supragingival plaque microbiota structure and salivary metabonomic profiles. A comparison of plaque microbiota changes was also performed between these two treatments and a third dataset where 50 subjects received regimen of dental scaling. Only Actinobaculum, TM7 and Leptotrichia were consistently reduced by all the three treatments, whereas the different microbial signatures of the three treatments during gingivitis relieve indicate distinct mechanisms of action. Our study suggests that microbiota based signatures can serve as a valuable approach for understanding and potentially comparing the modes of action for clinical treatments and oral-care products in the future.


Subject(s)
Gingivitis/microbiology , Gingivitis/therapy , Microbiota , Mouthwashes , Toothbrushing , Adolescent , Adult , Biodiversity , Cluster Analysis , Dental Plaque/microbiology , Dental Plaque Index , Female , Gingivitis/diagnosis , Humans , Male , Metabolome , Metabolomics/methods , Microbiota/drug effects , Middle Aged , Saliva/metabolism , Young Adult
10.
Cell Host Microbe ; 18(3): 296-306, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26355216

ABSTRACT

Microbiota-based prediction of chronic infections is promising yet not well established. Early childhood caries (ECC) is the most common infection in children. Here we simultaneously tracked microbiota development at plaque and saliva in 50 4-year-old preschoolers for 2 years; children either stayed healthy, transitioned into cariogenesis, or experienced caries exacerbation. Caries onset delayed microbiota development, which is otherwise correlated with aging in healthy children. Both plaque and saliva microbiota are more correlated with changes in ECC severity (dmfs) during onset than progression. By distinguishing between aging- and disease-associated taxa and exploiting the distinct microbiota dynamics between onset and progression, we developed a model, Microbial Indicators of Caries, to diagnose ECC from healthy samples with 70% accuracy and predict, with 81% accuracy, future ECC onsets for samples clinically perceived as healthy. Thus, caries onset in apparently healthy teeth can be predicted using microbiota, when appropriately de-trended for age.


Subject(s)
Dental Caries/diagnosis , Dental Caries/microbiology , Dental Plaque/microbiology , Microbiota , Saliva/microbiology , Child, Preschool , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Humans , Models, Statistical , Molecular Sequence Data , Prognosis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
11.
Sci Rep ; 4: 5147, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24888649

ABSTRACT

Although Traditional Chinese Medicine (TCM) preparations have long history with successful applications, the scientific and systematic quality assessment of TCM preparations mainly focuses on chemical constituents and is far from comprehensive. There are currently only few primitive studies on assessment of biological ingredients in TCM preparations. Here, we have proposed a method, M-TCM, for biological assessment of the quality of TCM preparations based on high-throughput sequencing and metagenomic analysis. We have tested this method on Liuwei Dihuang Wan (LDW), a TCM whose ingredients have been well-defined. Our results have shown that firstly, this method could determine the biological ingredients of LDW preparations. Secondly, the quality and stability of LDW varies significantly among different manufacturers. Thirdly, the overall quality of LDW samples is significantly affected by their biological contaminations. This novel strategy has the potential to achieve comprehensive ingredient profiling of TCM preparations.


Subject(s)
DNA, Plant/genetics , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , High-Throughput Nucleotide Sequencing/methods , Algorithms , Base Sequence , Drug Contamination/prevention & control , Molecular Sequence Data
12.
Genomics Proteomics Bioinformatics ; 12(3): 137-43, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24838067

ABSTRACT

Traditional Chinese medicine (TCM) preparations are widely used for healthcare and clinical practice. So far, the methods commonly used for quality evaluation of TCM preparations mainly focused on chemical ingredients. The biological ingredient analysis of TCM preparations is also important because TCM preparations usually contain both plant and animal ingredients, which often include some mis-identified herbal materials, adulterants or even some biological contaminants. For biological ingredient analysis, the efficiency of DNA extraction is an important factor which might affect the accuracy and reliability of identification. The component complexity in TCM preparations is high, and DNA might be destroyed or degraded in different degrees after a series of processing procedures. Therefore, it is necessary to establish an effective protocol for DNA extraction from TCM preparations. In this study, we chose a classical TCM preparation, Liuwei Dihuang Wan (LDW), as an example to develop a TCM-specific DNA extraction method. An optimized cetyl trimethyl ammonium bromide (CTAB) method (TCM-CTAB) and three commonly-used extraction kits were tested for extraction of DNA from LDW samples. Experimental results indicated that DNA with the highest purity and concentration was obtained by using TCM-CTAB. To further evaluate the different extraction methods, amplification of the second internal transcribed spacer (ITS2) and the chloroplast genome trnL intron was carried out. The results have shown that PCR amplification was successful only with template of DNA extracted by using TCM-CTAB. Moreover, we performed high-throughput 454 sequencing using DNA extracted by TCM-CTAB. Data analysis showed that 3-4 out of 6 prescribed species were detected from LDW samples, while up to 5 contaminating species were detected, suggesting TCM-CTAB method could facilitate follow-up DNA-based examination of TCM preparations.


Subject(s)
DNA/isolation & purification , Drugs, Chinese Herbal/chemistry , Liquid Phase Microextraction/methods , Cetrimonium , Cetrimonium Compounds/chemistry , DNA, Intergenic/genetics , Humans , Plant Proteins/genetics , Polymerase Chain Reaction , Reproducibility of Results , Solvents
13.
ISME J ; 8(9): 1768-80, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24646694

ABSTRACT

Predictive modeling of human disease based on the microbiota holds great potential yet remains challenging. Here, 50 adults underwent controlled transitions from naturally occurring gingivitis, to healthy gingivae (baseline), and to experimental gingivitis (EG). In diseased plaque microbiota, 27 bacterial genera changed in relative abundance and functional genes including 33 flagellar biosynthesis-related groups were enriched. Plaque microbiota structure exhibited a continuous gradient along the first principal component, reflecting transition from healthy to diseased states, which correlated with Mazza Gingival Index. We identified two host types with distinct gingivitis sensitivity. Our proposed microbial indices of gingivitis classified host types with 74% reliability, and, when tested on another 41-member cohort, distinguished healthy from diseased individuals with 95% accuracy. Furthermore, the state of the microbiota in naturally occurring gingivitis predicted the microbiota state and severity of subsequent EG (but not the state of the microbiota during the healthy baseline period). Because the effect of disease is greater than interpersonal variation in plaque, in contrast to the gut, plaque microbiota may provide advantages in predictive modeling of oral diseases.


Subject(s)
Gingivitis/microbiology , Microbiota , Mouth/microbiology , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Disease Progression , Female , Gingivitis/diagnosis , Humans , Male , Models, Biological , Periodontal Index , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...