Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Energy Secur ; 7(1): e00126, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29938110

ABSTRACT

A detailed network describing asparagine metabolism in plants was constructed using published data from Arabidopsis (Arabidopsis thaliana) maize (Zea mays), wheat (Triticum aestivum), pea (Pisum sativum), soybean (Glycine max), lupin (Lupus albus), and other species, including animals. Asparagine synthesis and degradation is a major part of amino acid and nitrogen metabolism in plants. The complexity of its metabolism, including limiting and regulatory factors, was represented in a logical sequence in a pathway diagram built using yED graph editor software. The network was used with a Unique Network Identification Pipeline in the analysis of data from 18 publicly available transcriptomic data studies. This identified links between genes involved in asparagine metabolism in wheat roots under drought stress, wheat leaves under drought stress, and wheat leaves under conditions of sulfur and nitrogen deficiency. The network represents a powerful aid for interpreting the interactions not only between the genes in the pathway but also among enzymes, metabolites and smaller molecules. It provides a concise, clear understanding of the complexity of asparagine metabolism that could aid the interpretation of data relating to wider amino acid metabolism and other metabolic processes.

2.
Nat Genet ; 50(5): 682-692, 2018 05.
Article in English | MEDLINE | ID: mdl-29662167

ABSTRACT

Prostate cancer represents a substantial clinical challenge because it is difficult to predict outcome and advanced disease is often fatal. We sequenced the whole genomes of 112 primary and metastatic prostate cancer samples. From joint analysis of these cancers with those from previous studies (930 cancers in total), we found evidence for 22 previously unidentified putative driver genes harboring coding mutations, as well as evidence for NEAT1 and FOXA1 acting as drivers through noncoding mutations. Through the temporal dissection of aberrations, we identified driver mutations specifically associated with steps in the progression of prostate cancer, establishing, for example, loss of CHD1 and BRCA2 as early events in cancer development of ETS fusion-negative cancers. Computational chemogenomic (canSAR) analysis of prostate cancer mutations identified 11 targets of approved drugs, 7 targets of investigational drugs, and 62 targets of compounds that may be active and should be considered candidates for future clinical trials.


Subject(s)
Prostatic Neoplasms/genetics , Adult , Aged , Aged, 80 and over , BRCA2 Protein/genetics , Disease Progression , Hepatocyte Nuclear Factor 3-alpha/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Middle Aged , Mutation , Oncogenes , Prostatic Neoplasms/pathology
3.
Carcinogenesis ; 39(3): 407-417, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29126163

ABSTRACT

To date, microarray analyses have led to the discovery of numerous individual 'molecular signatures' associated with specific cancers. However, there are serious limitations for the adoption of these multi-gene signatures in the clinical environment for diagnostic or prognostic testing as studies with more power need to be carried out. This may involve larger richer cohorts and more advanced analyses. In this study, we conduct analyses-based on gene regulatory network-to reveal distinct and common biomarkers across cancer types. Using microarray data of triple-negative and medullary breast, ovarian and lung cancers applied to a combination of glasso and Bayesian networks (BNs), we derived a unique network-containing genes that are uniquely involved: small proline-rich protein 1A (SPRR1A), follistatin like 1 (FSTL1), collagen type XII alpha 1 (COL12A1) and RAD51 associated protein 1 (RAD51AP1). RAD51AP1 and FSTL1 are significantly overexpressed in ovarian cancer patients but only RAD51AP1 is upregulated in lung cancer patients compared with healthy controls. The upregulation of RAD51AP1 was mirrored in the bloods of both ovarian and lung cancer patients, and Kaplan-Meier (KM) plots predicted poorer overall survival (OS) in patients with high expression of RAD51AP1. Suppression of RAD51AP1 by RNA interference reduced cell proliferation in vitro in ovarian (SKOV3) and lung (A549) cancer cells. This effect appears to be modulated by a decrease in the expression of mTOR-related genes and pro-metastatic candidate genes. Our data describe how an initial in silico approach can generate novel biomarkers that could potentially support current clinical practice and improve long-term outcomes.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Cystadenocarcinoma, Serous/genetics , DNA-Binding Proteins/genetics , Lung Neoplasms/genetics , Ovarian Neoplasms/genetics , Adenocarcinoma/mortality , Adenocarcinoma of Lung , Biomarkers, Tumor/analysis , Carcinoma, Medullary/genetics , Carcinoma, Medullary/mortality , Cystadenocarcinoma, Serous/mortality , Female , Gene Regulatory Networks , Humans , Kaplan-Meier Estimate , Lung Neoplasms/mortality , Male , Ovarian Neoplasms/mortality , Prognosis , RNA-Binding Proteins , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/mortality
4.
Article in English | MEDLINE | ID: mdl-26306224

ABSTRACT

Consensus approaches have been widely used to identify Gene Regulatory Networks (GRNs) that are common to multiple studies. However, in this research we develop an application that semi-automatically identifies key mechanisms that are specific to a particular set of conditions. We analyse four different types of cancer to identify gene pathways unique to each of them. To support the results reliability we calculate the prediction accuracy of each gene for the specified conditions and compare to predictions on other conditions. The most predictive are validated using the GeneCards encyclopaedia1 coupled with a statistical test for validating clusters. Finally, we implement an interface that allows the user to identify unique subnetworks of any selected combination of studies using AND & NOT logic operators. Results show that unique genes and sub-networks can be reliably identified and that they reflect key mechanisms that are fundamental to the cancer types under study.

5.
PLoS One ; 9(9): e106524, 2014.
Article in English | MEDLINE | ID: mdl-25191999

ABSTRACT

Microarrays are commonly used in biology because of their ability to simultaneously measure thousands of genes under different conditions. Due to their structure, typically containing a high amount of variables but far fewer samples, scalable network analysis techniques are often employed. In particular, consensus approaches have been recently used that combine multiple microarray studies in order to find networks that are more robust. The purpose of this paper, however, is to combine multiple microarray studies to automatically identify subnetworks that are distinctive to specific experimental conditions rather than common to them all. To better understand key regulatory mechanisms and how they change under different conditions, we derive unique networks from multiple independent networks built using glasso which goes beyond standard correlations. This involves calculating cluster prediction accuracies to detect the most predictive genes for a specific set of conditions. We differentiate between accuracies calculated using cross-validation within a selected cluster of studies (the intra prediction accuracy) and those calculated on a set of independent studies belonging to different study clusters (inter prediction accuracy). Finally, we compare our method's results to related state-of-the art techniques. We explore how the proposed pipeline performs on both synthetic data and real data (wheat and Fusarium). Our results show that subnetworks can be identified reliably that are specific to subsets of studies and that these networks reflect key mechanisms that are fundamental to the experimental conditions in each of those subsets.


Subject(s)
Computational Biology/methods , Gene Expression Profiling , Gene Regulatory Networks , Cluster Analysis , Datasets as Topic , Fusarium/genetics , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...