Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22276787

ABSTRACT

BackgroundHemodialysis patients are exposed to a markedly increased risk when infected with SARS-CoV-2. To date it is unclear if hemodialysis patients benefit from a fourth vaccination. MethodsA total of 142 hemodialysis patients (median age 72.6 years, 33.8% female) received four COVID-19 vaccinations between December 2020 and March 2022. RDB binding antibody titers were determined in a competitive surrogate neutralization assay. Vero-E6 cells were infected with SARS-CoV-2 variants of concern (VoC) Delta (B.1.617.2) or Omicron (B.1.1.529, sub lineage BA.1) in a biosafety level 3 laboratory to determine serum infection neutralization capacity before and after vaccination. ResultsAfter the fourth vaccination serum infection neutralization capacity significantly increased from a 50% inhibitory concentration (IC50, serum dilution factor 1:x) of 247.0 (46.3-1560.8) to 2560.0 (1174.0-2560.0) for the Delta VoC, and from 37.5 (20.0-198.8) to 668.5 (182.2-2560.0) for the Omicron VoC (each p<0.001). A significant increase of the neutralization capacity was even observed for patients who had high antibody titers after three vaccinations (p<0.001). Univariate regression analysis indicated immunosuppressive medication (p=0.001) and hepatitis B vaccination non-response (p=0.046), and multivariate analysis immunosuppressive medication as the only factor associated with a reduced effect against Delta (p<0.001). Ten patients with SARS-CoV-2 breakthrough infection before the fourth vaccination had by trend lower prior neutralization capacity for Omicron (p=0.051). ConclusionsOur findings suggest that hemodialysis patients benefit from a fourth vaccination in particular in the light of the highly infectious SARS-CoV-2 Omicron variant. A routinely applied four-time vaccination seems to broaden immunity against variants and would be recommended in hemodialysis patients.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22272771

ABSTRACT

Vaccines are the most important means to overcome the SARS-CoV-2 pandemic. They induce specific antibody and T-cell responses but it remains open how well vaccine-induced immunity is preserved over time following homologous and heterologous immunization regimens. Here, we compared the dynamics of humoral and cellular immune responses up to 5 months after homologous or heterologous vaccination with either ChAdOx1-nCoV-19 (ChAd) or BNT162b2 (BNT) or both. Antibody responses significantly waned after vaccination, irrespective of the regimen. The capacity to neutralize SARS-CoV-2 - including variants of concern such as Delta or Omicron - was superior after heterologous compared to homologous BNT vaccination, both of which resulted in longer-lasting humoral immunity than homologous ChAd immunization. T-cell responses showed less waning irrespective of the vaccination regimen. These findings demonstrate that heterologous vaccination with ChAd and BNT is a potent approach to induce long-term humoral and cellular immune protection. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSDue to some rare severe side effects after the administration of the adenoviral vaccine, ChAdOx1 nCoV-19, many countries recommended a heterologous vaccination scheme including mRNA vaccines like BNT162b2 for the second dose. We performed a PubMed search (with no restrictions on time span) using the search terms "SARS-CoV-2" and "heterologous vaccination" and obtained 247 results. Only a fraction of manuscripts included direct comparisons of patient cohorts that received either a heterologous or a homologous vaccination regimen. Of those, the vast majority investigated only short-term immunogenicity after vaccination. Thus, little is known about the long-term maintenance of immunity by heterologous compared to homologous vaccination. Added value of this studyWe add a very comprehensive and comparative study investigating heterologous and homologous vaccination regimens early and late after vaccination. Key features include the number of patients (n = 473), the number of vaccination cohorts (n= 3), the fact that samples were derived from three independent study centers and comparative analyses were performed at two independent study centers, as well as in-depth investigation of humoral and T cellular immunity. Implications of all the available evidenceThe recent data creates a line of evidence that heterologous vaccination, compared to homologous vaccination regimens, results in at least non-inferior maintenance of humoral and cellular immunity. The enhanced understanding of immunity induced by individual vaccination regimens is crucial for further recommendations regarding the necessity, timing and choice of additional vaccinations and public health policies.

SELECTION OF CITATIONS
SEARCH DETAIL
...