Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mol Cell Proteomics ; 17(7): 1432-1447, 2018 07.
Article in English | MEDLINE | ID: mdl-29599190

ABSTRACT

Although a variety of affinity purification mass spectrometry (AP-MS) strategies have been used to investigate complex interactions, many of these are susceptible to artifacts because of substantial overexpression of the exogenously expressed bait protein. Here we present a logical and systematic workflow that uses the multifunctional Halo tag to assess the correct localization and behavior of tagged subunits of the Sin3 histone deacetylase complex prior to further AP-MS analysis. Using this workflow, we modified our tagging/expression strategy with 21.7% of the tagged bait proteins that we constructed, allowing us to quickly develop validated reagents. Specifically, we apply the workflow to map interactions between stably expressed versions of the Sin3 subunits SUDS3, SAP30, or SAP30L and other cellular proteins. Here we show that the SAP30 and SAP30L paralogues strongly associate with the core Sin3 complex, but SAP30L has unique associations with the proteasome and the myelin sheath. Next, we demonstrate an advancement of the complex NSAF (cNSAF) approach, in which normalization to the scaffold protein SIN3A accounts for variations in the proportion of each bait capturing Sin3 complexes and allows a comparison among different baits capturing the same protein complex. This analysis reveals that although the Sin3 subunit SUDS3 appears to be used in both SIN3A and SIN3B based complexes, the SAP30 subunit is not used in SIN3B based complexes. Intriguingly, we do not detect the Sin3 subunits SAP18 and SAP25 among the 128 high-confidence interactions identified, suggesting that these subunits may not be common to all versions of the Sin3 complex in human cells. This workflow provides the framework for building validated reagents to assemble quantitative interaction networks for chromatin remodeling complexes and provides novel insights into focused protein interaction networks.


Subject(s)
Chromatography, Affinity/methods , Mass Spectrometry/methods , Protein Interaction Mapping/methods , Sin3 Histone Deacetylase and Corepressor Complex/metabolism , Workflow , Cell Line , HEK293 Cells , Humans , Protein Binding , Protein Subunits/metabolism
2.
Mol Cell Proteomics ; 15(11): 3435-3449, 2016 11.
Article in English | MEDLINE | ID: mdl-27609421

ABSTRACT

The NF-κB family of transcription factors is pivotal in controlling cellular responses to environmental stresses; abnormal nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling features in many autoimmune diseases and cancers. Several components of the NF-κB signaling pathway have been reported to interact with the protein TNIP2 (also known as ABIN2), and TNIP2 can both positively and negatively regulate NF-κB- dependent transcription of target genes. However, the function of TNIP2 remains elusive and the cellular machinery associating with TNIP2 has not been systematically defined. Here we first used a broad MudPIT/Halo Affinity Purification Mass Spectrometry (AP-MS) approach to map the network of proteins associated with the NF-κB transcription factors, and establish TNIP2 as an NF-κB network hub protein. We then combined AP-MS with biochemical approaches in a more focused study of truncated and mutated forms of TNIP2 to map protein associations with distinct regions of TNIP2. NF-κB interacted with the N-terminal region of TNIP2. A central region of TNIP2 interacted with the endosomal sorting complex ESCRT-I via its TSG101 subunit, a protein essential for HIV-1 budding, and a single point mutant in TNIP2 disrupted this interaction. The major gene ontology category for TNIP2 associated proteins was mRNA metabolism, and several of these associations, like KHDRBS1, were lost upon depletion of RNA. Given the major association of TNIP2 with mRNA metabolism proteins, we analyzed the RNA content of affinity purified TNIP2 using RNA-Seq. Surprisingly, a specific limited number of mRNAs was associated with TNIP2. These RNAs were enriched for transcription factor binding, transcription factor cofactor activity, and transcription regulator activity. They included mRNAs of genes in the Sin3A complex, the Mediator complex, JUN, HOXC6, and GATA2. Taken together, our findings suggest an expanded role for TNIP2, establishing a link between TNIP2, cellular transport machinery, and RNA transcript processing.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , NF-kappa B/metabolism , Protein Interaction Mapping/methods , Sequence Analysis, RNA/methods , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , HEK293 Cells , HeLa Cells , Humans , Mass Spectrometry/methods , Mutation , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
3.
Mol Cell Proteomics ; 15(3): 960-74, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26831523

ABSTRACT

The highly conserved yeast R2TP complex, consisting of Rvb1, Rvb2, Pih1, and Tah1, participates in diverse cellular processes ranging from assembly of protein complexes to apoptosis. Rvb1 and Rvb2 are closely related proteins belonging to the AAA+ superfamily and are essential for cell survival. Although Rvbs have been shown to be associated with various protein complexes including the Ino80 and Swr1chromatin remodeling complexes, we performed a systematic quantitative proteomic analysis of their associated proteins and identified two additional complexes that associate with Rvb1 and Rvb2: the chaperonin-containing T-complex and the 19S regulatory particle of the proteasome complex. We also analyzed Rvb1 and Rvb2 purified from yeast strains devoid of PIH1 and TAH1. These analyses revealed that both Rvb1 and Rvb2 still associated with Hsp90 and were highly enriched with RNA polymerase II complex components. Our analyses also revealed that both Rvb1 and Rvb2 were recruited to the Ino80 and Swr1 chromatin remodeling complexes even in the absence of Pih1 and Tah1 proteins. Using further biochemical analysis, we showed that Rvb1 and Rvb2 directly interacted with Hsp90 as well as with the RNA polymerase II complex. RNA-Seq analysis of the deletion strains compared with the wild-type strains revealed an up-regulation of ribosome biogenesis and ribonucleoprotein complex biogenesis genes, down-regulation of response to abiotic stimulus genes, and down-regulation of response to temperature stimulus genes. A Gene Ontology analysis of the 80 proteins whose protein associations were altered in the PIH1 or TAH1 deletion strains found ribonucleoprotein complex proteins to be the most enriched category. This suggests an important function of the R2TP complex in ribonucleoprotein complex biogenesis at both the proteomic and genomic levels. Finally, these results demonstrate that deletion network analyses can provide novel insights into cellular systems.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA Helicases/metabolism , Gene Deletion , Gene Regulatory Networks , Proteomics/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Sequence Analysis, RNA/methods , Transcription Factors/metabolism , Chromatin Assembly and Disassembly , Gene Ontology , Genome, Fungal , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Multiprotein Complexes/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proteome/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
4.
Sci Rep ; 5: 8530, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25704442

ABSTRACT

A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.


Subject(s)
Cloning, Molecular/methods , Proteins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Chromatography, Affinity , HEK293 Cells , Humans , Mass Spectrometry , Open Reading Frames/genetics , Protein Interaction Domains and Motifs , Protein Tyrosine Phosphatase, Non-Receptor Type 13/analysis , Protein Tyrosine Phosphatase, Non-Receptor Type 13/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 13/isolation & purification , Proteins/chemistry , Proteins/isolation & purification , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/isolation & purification
5.
Mol Cell Proteomics ; 13(6): 1510-22, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24722732

ABSTRACT

The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein-protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBß, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions.


Subject(s)
Protein Interaction Maps/genetics , Proteomics , Transcription Factor RelA/biosynthesis , Transcription Factors/biosynthesis , Cytoplasm/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Mass Spectrometry , Multiprotein Complexes/isolation & purification , Multiprotein Complexes/metabolism , Transcription Factor RelA/metabolism , Transcription Factors/genetics
6.
Mol Cell ; 50(5): 686-98, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23746352

ABSTRACT

Lipid metabolism is tightly controlled by the nutritional state of the organism. Nutrient-rich conditions increase lipogenesis, whereas nutrient deprivation promotes fat oxidation. In this study, we identify the mitochondrial sirtuin, SIRT4, as a regulator of lipid homeostasis. SIRT4 is active in nutrient-replete conditions to repress fatty acid oxidation while promoting lipid anabolism. SIRT4 deacetylates and inhibits malonyl CoA decarboxylase (MCD), an enzyme that produces acetyl CoA from malonyl CoA. Malonyl CoA provides the carbon skeleton for lipogenesis and also inhibits fat oxidation. Mice lacking SIRT4 display elevated MCD activity and decreased malonyl CoA in skeletal muscle and white adipose tissue. Consequently, SIRT4 KO mice display deregulated lipid metabolism, leading to increased exercise tolerance and protection against diet-induced obesity. In sum, this work elucidates SIRT4 as an important regulator of lipid homeostasis, identifies MCD as a SIRT4 target, and deepens our understanding of the malonyl CoA regulatory axis.


Subject(s)
Carboxy-Lyases/metabolism , Lipid Metabolism , Mitochondrial Proteins/metabolism , Sirtuins/metabolism , Acetylation , Adipose Tissue, White/metabolism , Animals , Diet , Fatty Acids/metabolism , Lipid Metabolism/genetics , Lipids/biosynthesis , Male , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , Obesity/etiology , Obesity/metabolism , Oxidation-Reduction , Sirtuins/genetics
7.
Aging (Albany NY) ; 3(9): 852-72, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21937767

ABSTRACT

Sirtuins are NAD+-dependent protein deacetylases regulating metabolism, stress responses, and aging processes. Mammalia possess seven Sirtuin isoforms, Sirt1-7, which differ in their subcellular localization and in the substrate proteins they deacetylate. The physiological roles of Sirtuins and their potential use as therapeutic targets for metabolic and aging-related diseases have spurred interest in the development of small-molecule Sirtuin modulators. Here, we describe an approach exploiting the structures available for four human Sirtuins for the development of isoform-specific inhibitors. Virtual docking of a compound library into the peptide binding pockets of crystal structures of Sirt2, 3, 5 and 6 yielded compounds potentially discriminating between these isoforms. Further characterization in activity assays revealed several inhibitory compounds with little isoform specificity, but also two compounds with micromolar potency and high specificity for Sirt2. Structure comparison and the predicted, shared binding mode of the Sirt2-specific compounds indicate a pocket extending from the peptide-binding groove as target side enabling isoform specificity. Our family-wide structure-based approach thus identified potent, Sirt2-specific inhibitors as well as lead structures and a target site for the development of compounds specific for other Sirtuin isoform, constituting an important step toward the identification of a complete panel of isoform-specific Sirtuin inhibitors.


Subject(s)
Enzyme Inhibitors/chemistry , Isoenzymes/antagonists & inhibitors , Sirtuins/antagonists & inhibitors , Cell Line , Computer Simulation , Drug Design , Enzyme Inhibitors/metabolism , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Ligands , Models, Molecular , Molecular Structure , Protein Binding , Protein Conformation , Sirtuins/chemistry , Sirtuins/genetics , Structure-Activity Relationship
8.
Mol Ther ; 19(12): 2144-51, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21829178

ABSTRACT

Inefficient gene delivery is a critical factor limiting the use of nonviral methods in therapeutic applications including gene therapy and tissue engineering. There have been few efforts to understand or engineer the molecular signaling pathways that dictate the efficacy of gene transfer. Microarray analysis was used to determine endogenous gene expression profiles modulated during nonviral gene transfer. Nonviral DNA lipoplexes were delivered to HEK 293T cells. Flow cytometry was used to isolate a population of transfected cells. Expression patterns were compared between transfected and nontransfected samples, which revealed three genes that were significantly upregulated in transfected cells, including RAP1A, a GTPase implicated in integrin-mediated cell adhesion, and HSP70B', a stress-inducible gene that may be important for maintaining cell viability. Furthermore, RAP1A was also significantly upregulated in untransfected cells that were exposed to lipoplexes but that had not expressed the transgene as compared to control, untreated cells. Transfection in the presence of activators of upregulated genes was enhanced, demonstrating the principle of altering endogenous gene expression profiles to enhance transfection. With a greater understanding of signaling pathways involved in gene delivery, more efficient nonviral delivery schemes capitalizing on endogenous factors can be developed to advance therapeutic applications.


Subject(s)
Biomarkers/metabolism , Gene Expression Profiling , Genetic Vectors/administration & dosage , Oligonucleotide Array Sequence Analysis , Animals , Cells, Cultured , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice , NIH 3T3 Cells , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Transfection
9.
Biochemistry ; 46(46): 13407-14, 2007 Nov 20.
Article in English | MEDLINE | ID: mdl-17960917

ABSTRACT

Helicobacter pylori gamma-glutamyltranspeptidase (HpGT) is a member of the N-terminal nucleophile hydrolase superfamily. It is translated as an inactive 60 kDa polypeptide precursor that undergoes intramolecular autocatalytic cleavage to generate a fully active heterodimer composed of a 40 kDa and a 20 kDa subunit. The resultant N-terminus, Thr 380, has been shown to be the catalytic nucleophile in both autoprocessing and enzymatic reactions. Once processed, HpGT catalyzes the hydrolysis of the gamma-glutamyl bond in glutathione and its conjugates. To facilitate the determination of physiologically relevant substrates for the enzyme, crystal structures of HpGT in complex with glutamate (1.6 A, Rfactor = 16.7%, Rfree = 19.0%) and an inactive HpGT mutant, T380A, in complex with S-(nitrobenzyl)glutathione (1.55 A, Rfactor = 18.7%, Rfree = 21.8%) have been determined. Residues that comprise the gamma-glutamyl binding site are primarily located in the 20 kDa subunit and make numerous hydrogen bonds with the alpha-amino and alpha-carboxylate groups of the substrate. In contrast, a single hydrogen bond occurs between the T380A mutant and the remainder of the ligand. Lack of specific coordination beyond the gamma-glutamyl moiety may account for the substrate binding permissiveness of the enzyme. Structural analysis was combined with site-directed mutagenesis of residues involved in maintaining the conformation of a loop region that covers the gamma-glutamyl binding site. Results provide evidence that access to this buried site may occur through conformational changes in the Tyr 433-containing loop, as disruption of the intricate hydrogen-bond network responsible for optimal placement of Tyr 433 significantly diminishes catalytic activity.


Subject(s)
Helicobacter pylori/enzymology , Tyrosine/chemistry , gamma-Glutamyltransferase/chemistry , Binding Sites , Catalysis , Crystallography, X-Ray , Glutamic Acid/chemistry , Glutamic Acid/metabolism , Hydrolysis , Kinetics , Ligands , Models, Molecular , Protein Structure, Tertiary , Substrate Specificity , Tyrosine/genetics , gamma-Glutamyltransferase/genetics , gamma-Glutamyltransferase/metabolism
10.
Biochemistry ; 46(2): 369-78, 2007 Jan 16.
Article in English | MEDLINE | ID: mdl-17209547

ABSTRACT

Human UDP-glucose dehydrogenase (UGDH) is a homohexameric enzyme that catalyzes two successive oxidations of UDP-glucose to yield UDP-glucuronic acid, an essential precursor for matrix polysaccharide and proteoglycan synthesis. We previously used crystal coordinates for Streptococcus pyogenes UGDH to generate a model of the human enzyme active site. In the studies reported here, we have used this model to identify three putative active site residues: lysine 220, aspartate 280, and lysine 339. Each residue was site-specifically mutagenized to evaluate its importance for catalytic activity and maintenance of hexameric quaternary structure. Alteration of lysine 220 to alanine, histidine, or arginine significantly impaired enzyme function. Assaying activity over longer time courses revealed a plateau after reduction of a single equivalent of NAD+ in the alanine and histidine mutants, whereas turnover continued in the arginine mutant. Thus, one role of this lysine may be to stabilize anionic transition states during substrate conversion. Mutation of aspartate 280 to asparagine was also severely detrimental to catalysis. The relative position of this residue within the active site and dependence of function on acidic character point toward a critical role for aspartate 280 in activation of the substrate and the catalytic cysteine. Finally, changing lysine 339 to alanine yielded the wild-type Vmax, but a 165-fold decrease in affinity for UDP-glucose. Interestingly, gel filtration of this substrate-binding mutant also determined it was a dimer, indicating that hexameric quaternary structure is not critical for catalysis. Collectively, this analysis has provided novel insights into the complex catalytic mechanism of UGDH.


Subject(s)
Uridine Diphosphate Glucose Dehydrogenase/chemistry , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Amino Acid Substitution , Aspartic Acid/chemistry , Catalytic Domain/genetics , Dimerization , Humans , In Vitro Techniques , Kinetics , Lysine/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Uridine Diphosphate Glucose Dehydrogenase/genetics
11.
J Biol Chem ; 282(1): 534-41, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17107958

ABSTRACT

Helicobacter pylorigamma-glutamyltranspeptidase (HpGT) is a glutathione-degrading enzyme that has been shown to be a virulence factor in infection. It is expressed as a 60-kDa inactive precursor that must undergo autocatalytic processing to generate a 40-kDa/20-kDa heterodimer with full gamma-glutamyl amide bond hydrolase activity. The new N terminus of the processed enzyme, Thr-380, is the catalytic nucleophile in both the autoprocessing and enzymatic reactions, indicating that HpGT is a member of the N-terminal nucleophile hydrolase superfamily. To further investigate activation as a result of autoprocessing, the structure of HpGT has been determined to a resolution of 1.9 A. The refined model contains two 40-kDa/20-kDa heterodimers in the asymmetric unit and has structural features comparable with other N-terminal nucleophile hydrolases. Autoprocessing of HpGT leads to a large conformational change, with the loop preceding the catalytic Thr-380 moving >35 A, thus relieving steric constraints that likely limit substrate binding. In addition, cleavage of the proenzyme results in the formation of a threonine-threonine dyad comprised of Thr-380 and a second conserved threonine residue, Thr-398. The hydroxyl group of Thr-398 is located equidistant from the alpha-amino group and hydroxyl side chain of Thr-380. Mutation of Thr-398 to an alanine results in an enzyme that is fully capable of autoprocessing but is devoid of enzymatic activity. Substrate docking studies in combination with homology modeling studies of the human homologue reveal additional mechanistic details of enzyme maturation and activation, substrate recognition, and catalysis.


Subject(s)
Helicobacter pylori/enzymology , Threonine/chemistry , gamma-Glutamyltransferase/chemistry , Binding Sites , Catalysis , Crystallography, X-Ray , Dimerization , Glutathione/chemistry , Humans , Kinetics , Models, Chemical , Models, Molecular , Protein Binding , Protein Structure, Tertiary , Substrate Specificity , gamma-Glutamyltransferase/metabolism
12.
J Biol Chem ; 281(28): 19029-37, 2006 Jul 14.
Article in English | MEDLINE | ID: mdl-16672227

ABSTRACT

Gamma-glutamyltranspeptidase (gammaGT), a member of the N-terminal nucleophile hydrolase superfamily, initiates extracellular glutathione reclamation by cleaving the gamma-glutamyl amide bond of the tripeptide. This protein is translated as an inactive proenzyme that undergoes autoprocessing to become an active enzyme. The resultant N terminus of the cleaved proenzyme serves as a nucleophile in amide bond hydrolysis. Helicobacter pylori gamma-glutamyltranspeptidase (HpGT) was selected as a model system to study the mechanistic details of autoprocessing and amide bond hydrolysis. In contrast to previously reported gammaGT, large quantities of HpGT were expressed solubly in the inactive precursor form. The 60-kDa proenzyme was kinetically competent to form the mature 40- and 20-kDa subunits and exhibited maximal autoprocessing activity at neutral pH. The activated enzyme hydrolyzed the gamma-glutamyl amide bond of several substrates with comparable rates, but exhibited limited transpeptidase activity relative to mammalian gammaGT. As with autoprocessing, maximal enzymatic activity was observed at neutral pH, with hydrolysis of the acyl-enzyme intermediate as the rate-limiting step. Coexpression of the 20- and 40-kDa subunits of HpGT uncoupled autoprocessing from enzymatic activity and resulted in a fully active heterotetramer with kinetic constants similar to those of the wild-type enzyme. The specific contributions of a conserved threonine residue (Thr380) to autoprocessing and hydrolase activities were examined by mutagenesis using both the standard and coexpression systems. The results of these studies indicate that the gamma-methyl group of Thr380 orients the hydroxyl group of this conserved residue, which is required for both the processing and hydrolase reactions.


Subject(s)
Helicobacter pylori/enzymology , gamma-Glutamyltransferase/chemistry , Bacterial Proteins/chemistry , Biochemistry/methods , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Peptides/chemistry , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Threonine/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...