Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 5(3)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32518194

ABSTRACT

Increasing anthropogenic inputs of fixed nitrogen are leading to greater eutrophication of aquatic environments, but it is unclear how this impacts the flux and fate of carbon in lacustrine and riverine systems. Here, we present evidence that the form of nitrogen governs the partitioning of carbon among members in a genome-sequenced, model phototrophic biofilm of 20 members. Consumption of NO3 - as the sole nitrogen source unexpectedly resulted in more rapid transfer of carbon to heterotrophs than when NH4 + was also provided, suggesting alterations in the form of carbon exchanged. The form of nitrogen dramatically impacted net community nitrogen, but not carbon, uptake rates. Furthermore, this alteration in nitrogen form caused very large but focused alterations to community structure, strongly impacting the abundance of only two species within the biofilm and modestly impacting a third member species. Our data suggest that nitrogen metabolism may coordinate coupled carbon-nitrogen biogeochemical cycling in benthic biofilms and, potentially, in phototroph-heterotroph consortia more broadly. It further indicates that the form of nitrogen inputs may significantly impact the contribution of these communities to carbon partitioning across the terrestrial-aquatic interface.IMPORTANCE Anthropogenic inputs of nitrogen into aquatic ecosystems, and especially those of agricultural origin, involve a mix of chemical species. Although it is well-known in general that nitrogen eutrophication markedly influences the metabolism of aquatic phototrophic communities, relatively little is known regarding whether the specific chemical form of nitrogen inputs matter. Our data suggest that the nitrogen form alters the rate of nitrogen uptake significantly, whereas corresponding alterations in carbon uptake were minor. However, differences imposed by uptake of divergent nitrogen forms may result in alterations among phototroph-heterotroph interactions that rewire community metabolism. Furthermore, our data hint that availability of other nutrients (i.e., iron) might mediate the linkage between carbon and nitrogen cycling in these communities. Taken together, our data suggest that different nitrogen forms should be examined for divergent impacts on phototrophic communities in fluvial systems and that these anthropogenic nitrogen inputs may significantly differ in their ultimate biogeochemical impacts.

2.
PLoS One ; 13(10): e0204831, 2018.
Article in English | MEDLINE | ID: mdl-30289885

ABSTRACT

Proteins, metabolites, and 16S rRNA measurements were used to examine the community structure and functional relationships within a cellulose degrading anaerobic bioreactor. The bioreactor was seeded with bovine rumen fluid and operated with a 4 day hydraulic retention time on cellulose (avicel) as sole carbon and energy source. The reactor performance and microbial community structure was monitored during the establishment of the cellulose-degrading community. After stable operation was established in the bioreactor, the mixing intensity was increased in order to investigate the effect of a physical disruption of the microbial community structure. Finally, the original conditions were re-established to understand the stability of the microbial community after a perturbation. All factors measured were found to be inter-correlated during these three distinct phases of operation (establishment, perturbation and re-establishment). In particular, the return of community structure and function to pre-perturbed conditions suggests that propionate fermentation and acetate utilization were the explanatory factors for community establishment and re-establishment.


Subject(s)
Bacteria/classification , Bacterial Proteins/analysis , Bioreactors/microbiology , RNA, Ribosomal, 16S/genetics , Acetates/chemistry , Anaerobiosis , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Caproates/chemistry , Cattle , Cellulose , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Fermentation , Metabolomics , Metagenomics/methods , Propionates/chemistry , Proteomics/methods , Rumen/microbiology
3.
mBio ; 7(3)2016 06 28.
Article in English | MEDLINE | ID: mdl-27353754

ABSTRACT

UNLABELLED: Although it is becoming clear that many microbial primary producers can also play a role as organic consumers, we know very little about the metabolic regulation of photoautotroph organic matter consumption. Cyanobacteria in phototrophic biofilms can reuse extracellular organic carbon, but the metabolic drivers of extracellular processes are surprisingly complex. We investigated the metabolic foundations of organic matter reuse by comparing exoproteome composition and incorporation of (13)C-labeled and (15)N-labeled cyanobacterial extracellular organic matter (EOM) in a unicyanobacterial biofilm incubated using different light regimes. In the light and the dark, cyanobacterial direct organic C assimilation accounted for 32% and 43%, respectively, of all organic C assimilation in the community. Under photosynthesis conditions, we measured increased excretion of extracellular polymeric substances (EPS) and proteins involved in micronutrient transport, suggesting that requirements for micronutrients may drive EOM assimilation during daylight hours. This interpretation was supported by photosynthesis inhibition experiments, in which cyanobacteria incorporated N-rich EOM-derived material. In contrast, under dark, C-starved conditions, cyanobacteria incorporated C-rich EOM-derived organic matter, decreased excretion of EPS, and showed an increased abundance of degradative exoproteins, demonstrating the use of the extracellular domain for C storage. Sequence-structure modeling of one of these exoproteins predicted a specific hydrolytic activity that was subsequently detected, confirming increased EOM degradation in the dark. Associated heterotrophic bacteria increased in abundance and upregulated transport proteins under dark relative to light conditions. Taken together, our results indicate that biofilm cyanobacteria are successful competitors for organic C and N and that cyanobacterial nutrient and energy requirements control the use of EOM. IMPORTANCE: Cyanobacteria are globally distributed primary producers, and the fate of their fixed C influences microbial biogeochemical cycling. This fate is complicated by cyanobacterial degradation and assimilation of organic matter, but because cyanobacteria are assumed to be poor competitors for organic matter consumption, regulation of this process is not well tested. In mats and biofilms, this is especially relevant because cyanobacteria produce an extensive organic extracellular matrix, providing the community with a rich source of nutrients. Light is a well-known regulator of cyanobacterial metabolism, so we characterized the effects of light availability on the incorporation of organic matter. Using stable isotope tracing at the single-cell level, we quantified photoautotroph assimilation under different metabolic conditions and integrated the results with proteomics to elucidate metabolic status. We found that cyanobacteria effectively compete for organic matter in the light and the dark and that nutrient requirements and community interactions contribute to cycling of extracellular organic matter.


Subject(s)
Biofilms/radiation effects , Carbon/metabolism , Cyanobacteria/metabolism , Light , Nitrogen/metabolism , Polysaccharides, Bacterial/metabolism , Biofilms/growth & development , Carbon/chemistry , Isotopes , Micronutrients/metabolism , Nitrogen/chemistry , Photosynthesis , Polymers/metabolism , Proteome , Single-Cell Analysis
4.
FEMS Microbiol Ecol ; 90(3): 802-15, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25290699

ABSTRACT

Integrated 'omics have been used on pure cultures and co-cultures, yet they have not been applied to complex microbial communities to examine questions of perturbation response. In this study, we used integrated 'omics to measure the perturbation response of a cellulose-degrading bioreactor community fed with microcrystalline cellulose (Avicel). We predicted that a pH decrease by addition of a pulse of acid would reduce microbial community diversity and temporarily reduce reactor function in terms of cellulose degradation. However, 16S rDNA gene pyrosequencing results revealed increased alpha diversity in the microbial community after the perturbation, and a persistence of the dominant community members over the duration of the experiment. Proteomics results showed a decrease in activity of proteins associated with Fibrobacter succinogenes 2 days after the perturbation followed by increased protein abundances 6 days after the perturbation. The decrease in cellulolytic activity suggested by the proteomics was confirmed by the accumulation of Avicel in the reactor. Metabolomics showed a pattern similar to that of the proteome, with amino acid production decreasing 2 days after the perturbation and increasing after 6 days. This study demonstrated that community 'omics data provide valuable information about the interactions and function of anaerobic cellulolytic community members after a perturbation.


Subject(s)
Bioreactors , Cellulose/metabolism , Fibrobacter/metabolism , Microbial Consortia/physiology , Microbial Interactions/physiology , Base Sequence , Coculture Techniques , Hydrogen-Ion Concentration , Metabolomics , Microbial Consortia/genetics , Proteomics , RNA, Ribosomal, 16S , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...