Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 325(4): H687-H701, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37566109

ABSTRACT

The ductus arteriosus (DA) is a vascular shunt that allows oxygenated blood to bypass the developing lungs in utero. Fetal DA patency requires vasodilatory signaling via the prostaglandin E2 (PGE2) receptor EP4. However, in humans and mice, disrupted PGE2-EP4 signaling in utero causes unexpected patency of the DA (PDA) after birth, suggesting another role for EP4 during development. We used EP4-knockout (KO) mice and acute versus chronic pharmacological approaches to investigate EP4 signaling in DA development and function. Expression analyses identified EP4 as the primary EP receptor in the DA from midgestation to term; inhibitor studies verified EP4 as the primary dilator during this period. Chronic antagonism recapitulated the EP4 KO phenotype and revealed a narrow developmental window when EP4 stimulation is required for postnatal DA closure. Myography studies indicate that despite reduced contractile properties, the EP4 KO DA maintains an intact oxygen response. In newborns, hyperoxia constricted the EP4 KO DA but survival was not improved, and permanent remodeling was disrupted. Vasomotion and increased nitric oxide (NO) sensitivity in the EP4 KO DA suggest incomplete DA development. Analysis of DA maturity markers confirmed a partially immature EP4 KO DA phenotype. Together, our data suggest that EP4 signaling in late gestation plays a key developmental role in establishing a functional term DA. When disrupted in EP4 KO mice, the postnatal DA exhibits signaling and contractile properties characteristic of an immature DA, including impairments in the first, muscular phase of DA closure, in addition to known abnormalities in the second permanent remodeling phase.NEW & NOTEWORTHY EP4 is the primary EP receptor in the ductus arteriosus (DA) and is critical during late gestation for its development and eventual closure. The "paradoxical" patent DA (PDA) phenotype of EP4-knockout mice arises from a combination of impaired contractile potential, altered signaling properties, and a failure to remodel associated with an underdeveloped immature vessel. These findings provide new mechanistic insights into women who receive NSAIDs to treat preterm labor, whose infants have unexplained PDA.


Subject(s)
Ductus Arteriosus, Patent , Ductus Arteriosus , Mice , Animals , Infant, Newborn , Female , Pregnancy , Humans , Ductus Arteriosus/metabolism , Dinoprostone/metabolism , Receptors, Prostaglandin E, EP4 Subtype/genetics , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Ductus Arteriosus, Patent/genetics , Mice, Knockout
2.
Pharmacol Res ; 195: 106876, 2023 09.
Article in English | MEDLINE | ID: mdl-37536638

ABSTRACT

There is a lack of FDA-approved tocolytics for the management of preterm labor (PL). In prior drug discovery efforts, we identified mundulone and mundulone acetate (MA) as inhibitors of in vitro intracellular Ca2+-regulated myometrial contractility. In this study, we probed the tocolytic potential of these compounds using human myometrial samples and a mouse model of preterm birth. In a phenotypic assay, mundulone displayed greater efficacy, while MA showed greater potency and uterine-selectivity in the inhibition of intracellular-Ca2+ mobilization. Cell viability assays revealed that MA was significantly less cytotoxic. Organ bath and vessel myography studies showed that only mundulone exerted inhibition of myometrial contractions and that neither compounds affected vasoreactivity of ductus arteriosus. A high-throughput combination screen identified that mundulone exhibits synergism with two clinical-tocolytics (atosiban and nifedipine), and MA displayed synergistic efficacy with nifedipine. Of these combinations, mundulone+atosiban demonstrated a significant improvement in the in vitro therapeutic index compared to mundulone alone. The ex vivo and in vivo synergism of mundulone+atosiban was substantiated, yielding greater tocolytic efficacy and potency on myometrial tissue and reduced preterm birth rates in a mouse model of PL compared to each single agent. Treatment with mundulone after mifepristone administration dose-dependently delayed the timing of delivery. Importantly, mundulone+atosiban permitted long-term management of PL, allowing 71% dams to deliver viable pups at term (>day 19, 4-5 days post-mifepristone exposure) without visible maternal and fetal consequences. Collectively, these studies provide a strong foundation for the development of mundulone as a single or combination tocolytic for management of PL.


Subject(s)
Biological Products , Obstetric Labor, Premature , Premature Birth , Tocolytic Agents , Female , Infant, Newborn , Mice , Animals , Humans , Tocolytic Agents/pharmacology , Tocolytic Agents/therapeutic use , Premature Birth/drug therapy , Nifedipine/pharmacology , Nifedipine/therapeutic use , Mifepristone/therapeutic use , Biological Products/therapeutic use , Obstetric Labor, Premature/drug therapy
3.
bioRxiv ; 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37333338

ABSTRACT

Currently, there is a lack of FDA-approved tocolytics for the management of preterm labor (PL). In prior drug discovery efforts, we identified mundulone and its analog mundulone acetate (MA) as inhibitors of in vitro intracellular Ca 2+ -regulated myometrial contractility. In this study, we probed the tocolytic and therapeutic potential of these small molecules using myometrial cells and tissues obtained from patients receiving cesarean deliveries, as well as a mouse model of PL resulting in preterm birth. In a phenotypic assay, mundulone displayed greater efficacy in the inhibition of intracellular-Ca 2+ from myometrial cells; however, MA showed greater potency and uterine-selectivity, based IC 50 and E max values between myometrial cells compared to aorta vascular smooth muscle cells, a major maternal off-target site of current tocolytics. Cell viability assays revealed that MA was significantly less cytotoxic. Organ bath and vessel myography studies showed that only mundulone exerted concentration-dependent inhibition of ex vivo myometrial contractions and that neither mundulone or MA affected vasoreactivity of ductus arteriosus, a major fetal off-target of current tocolytics. A high-throughput combination screen of in vitro intracellular Ca 2+ -mobilization identified that mundulone exhibits synergism with two clinical-tocolytics (atosiban and nifedipine), and MA displayed synergistic efficacy with nifedipine. Of these synergistic combinations, mundulone + atosiban demonstrated a favorable in vitro therapeutic index (TI)=10, a substantial improvement compared to TI=0.8 for mundulone alone. The ex vivo and in vivo synergism of mundulone and atosiban was substantiated, yielding greater tocolytic efficacy and potency on isolated mouse and human myometrial tissue and reduced preterm birth rates in a mouse model of PL compared to each single agent. Treatment with mundulone 5hrs after mifepristone administration (and PL induction) dose-dependently delayed the timing of delivery. Importantly, mundulone in combination with atosiban (FR 3.7:1, 6.5mg/kg + 1.75mg/kg) permitted long-term management of PL after induction with 30 µg mifepristone, allowing 71% dams to deliver viable pups at term (> day 19, 4-5 days post-mifepristone exposure) without any visible maternal and fetal consequences. Collectively, these studies provide a strong foundation for the future development of mundulone as a stand-alone single- and/or combination-tocolytic therapy for management of PL.

4.
FASEB J ; 37(7): e23028, 2023 07.
Article in English | MEDLINE | ID: mdl-37310356

ABSTRACT

Leucine-rich repeat containing 8A (LRRC8A) volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A associates with NADPH oxidase 1 (Nox1) and supports extracellular superoxide production. We tested the hypothesis that VRACs modulate TNFα signaling and vasomotor function in mice lacking LRRC8A exclusively in vascular smooth muscle cells (VSMCs, Sm22α-Cre, Knockout). Knockout (KO) mesenteric vessels contracted normally but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). Forty-eight hours of ex vivo exposure to TNFα (10 ng/mL) enhanced contraction to norepinephrine (NE) and markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 µM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 33 proteins that interacted with LRRC8A. Among them, the myosin phosphatase rho-interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots. siLRRC8A or CBX treatment decreased RhoA activity in VSMCs, and MYPT1 phosphorylation was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. Interaction of LRRC8A with MPRIP may allow redox regulation of the cytoskeleton by linking Nox1 activation to impaired vasodilation. This identifies VRACs as potential targets for treatment or prevention of vascular disease.


Subject(s)
Muscle, Smooth, Vascular , Animals , Mice , Acetylcholine/pharmacology , Anions , Membrane Proteins/genetics , Mice, Knockout , Myosin-Light-Chain Phosphatase , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiology
5.
bioRxiv ; 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36945623

ABSTRACT

Background: In vascular smooth muscle cells (VSMCs), LRRC8A volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A physically associates with NADPH oxidase 1 (Nox1) and supports its production of extracellular superoxide (O 2 -• ). Methods and Results: Mice lacking LRRC8A exclusively in VSMCs (Sm22α-Cre, KO) were used to assess the role of VRACs in TNFα signaling and vasomotor function. KO mesenteric vessels contracted normally to KCl and phenylephrine, but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). 48 hours of ex vivo exposure to TNFα (10ng/ml) markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 µM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 35 proteins that interacted with LRRC8A. Pathway analysis revealed actin cytoskeletal regulation as the most closely associated function of these proteins. Among these proteins, the Myosin Phosphatase Rho-Interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots which revealed LRRC8A binding at the second Pleckstrin Homology domain of MPRIP. siLRRC8A or CBX treatment decreased RhoA activity in cultured VSMCs, and MYPT1 phosphorylation at T853 was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. Conclusions: Interaction of Nox1/LRRC8A with MPRIP/RhoA/MYPT1/actin may allow redox regulation of the cytoskeleton and link Nox1 activation to both inflammation and vascular contractility.

6.
Reprod Sci ; 29(2): 586-595, 2022 02.
Article in English | MEDLINE | ID: mdl-33852137

ABSTRACT

A great need exists to develop tocolytic and uterotonic drugs that combat poor, labor-related maternal and fetal outcomes. A widely utilized method to assess novel compounds for their tocolytic and uterotonic efficacy is the isometric organ bath contractility assay. Unfortunately, water-insoluble compounds can be difficult to test using the physiological, buffer-based, organ bath assay. Common methods for overcoming solubility issues include solvent variation, cosolvency, surfactant or complexion use, and emulsification. However, these options for drug delivery or formulation can impact tissue function. Therefore, the goal of this study was to evaluate the ability of common solvents, surfactants, cosolvents, and emulsions to adequately solubilize compounds in the organ bath assay without affecting mouse myometrial contractility. We found that acetone, acetonitrile, and ethanol had the least effect, while dimethylacetamide, ethyl acetate, and isopropanol displayed the greatest inhibition of myometrial contractility based on area under the contractile curve analyses. The minimum concentration of surfactants, cosolvents, and human serum albumin required to solubilize nifedipine, a current tocolytic drug, resulted in extensive bubbling in the organ bath assay, precluding their use. Finally, we report that an oil-in-water base emulsion containing no drug has no statistical effect beyond the control (water), while the drug emulsion yielded the same potency and efficacy as the freely solubilized drug.


Subject(s)
Myometrium/drug effects , Tocolytic Agents/pharmacology , Uterine Contraction/drug effects , 2-Propanol/pharmacology , Acetamides/pharmacology , Acetates/pharmacology , Acetone/pharmacology , Acetonitriles/pharmacology , Animals , Emulsions/pharmacology , Ethanol/pharmacology , Female , Mice , Solvents/pharmacology
7.
Pediatr Res ; 87(6): 991-997, 2020 05.
Article in English | MEDLINE | ID: mdl-31816622

ABSTRACT

BACKGROUND: Indomethacin treatment for patent ductus arteriosus (PDA) is associated with acute kidney injury (AKI). Fenoldopam, a dopamine (DA) DA1-like receptor agonist dilates the renal vasculature and may preserve renal function during indomethacin treatment. However, limited information exists on DA receptor-mediated signaling in the ductus and fenoldopam may prevent ductus closure given its vasodilatory nature. METHODS: DA receptor expression in CD-1 mouse vessels was analyzed by qPCR and immunohistochemistry. Concentration-response curves were established using pressure myography. Pretreatment with SCH23390 (DA1-like receptor antagonist), phentolamine (α -adrenergic receptor antagonist) or indomethacin addressed mechanisms for DA-induced changes. Fenoldopam's effects on postnatal ductus closure were evaluated in vivo. RESULTS: DA1 receptors were expressed equally in ductus and aorta. High-dose DA induced modest vasoconstriction under newborn O2 conditions. Phentolamine inhibited DA-induced constriction, while SCH23390 augmented constriction, consistent with a vasodilatory role for DA1 receptors. Despite this, fenoldopam had little effect on ductus tone nor indomethacin- or O2-induced constriction and did not impair postnatal closure in vivo. CONCLUSION(S): DA receptors are present in the ductus but have limited physiologic effects. DA-induced ductus vasoconstriction is mediated via α-adrenergic pathways. The absence of DA1-mediated impairment of ductus closure supports the study of potential role for fenoldopam during PDA treatment.


Subject(s)
Dopamine Agonists/pharmacology , Dopamine/metabolism , Ductus Arteriosus, Patent/drug therapy , Ductus Arteriosus/drug effects , Fenoldopam/pharmacology , Receptors, Dopamine D1/agonists , Vasoconstriction/drug effects , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Ductus Arteriosus/metabolism , Ductus Arteriosus/physiopathology , Ductus Arteriosus, Patent/metabolism , Ductus Arteriosus, Patent/physiopathology , Female , Indomethacin/toxicity , Mice , Oxygen/toxicity , Pregnancy , Receptors, Dopamine D1/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...