Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 107(1): 508-515, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37709038

ABSTRACT

In the buffalo dairy sector, a huge effort is still needed to improve mastitis prevention, detection, and management. Electrical conductivity (EC) and total somatic cell count (SCC) are well-known indirect indicators of mastitis. Differential somatic cell count (DSCC), which represents the proportion of neutrophils and lymphocytes on the total SCC, is instead a novel phenotype collected in the dairy cattle sector in the last lustrum. As little is known about this novel trait in dairy buffalo, in the present study we explored the nongenetic factors affecting DSCC, as well as EC and total somatic cell score (SCS), in the Italian Mediterranean buffalo. The data set used for the analysis included 14,571 test-day (TD) records of 1,501 animals from 6 herds, and climatic information of the sampling locations. The original data were filtered to exclude animals with less than 3 TD per lactation and, for the investigated traits, outliers beyond 4 standard deviations. In the statistical model we included the fixed effects of herd (6 classes), days in milk (DIM; 10 classes of 30 d, with the last being an open class until 360 d), parity (6 classes, from 1 to 6+), year-season of calving (11 classes, from summer 2019 to winter 2021/2022), year-season of sampling (9 classes, from spring 2020 to spring 2022), production level (4 classes based on quartiles of average milk yield by herd), and temperature-humidity index (THI; 4 classes based on quartiles, calculated using the average temperature and relative humidity of the 5 d before sampling). Average EC, SCS, and DSCC vary across herds. Considering DIM, greater EC values were observed at the beginning and the end of lactation; SCS was slightly lower, but DSCC was greater around the lactation peak. Increased EC, SCS, and DSCC levels with increasing parity were reported. Year-season calving and year-season sampling only slightly affected the variation of the investigated traits. Milk of high-producing buffaloes was characterized by lower EC and SCS mean values, nevertheless it had slightly greater DSCC percentages. Buffaloes grouped in the highest THI classes (classes 3 and 4) showed, on average, greater EC, SCS, and DSCC in comparison to the lower classes, especially to class 2. Results of the present study represent a preliminary as well as necessary step for the possible future inclusion of EC, SCS, or DSCC in breeding programs aimed to improve mastitis resistance in dairy buffaloes.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Pregnancy , Female , Cattle , Animals , Buffaloes , Milk , Lactation/genetics , Cell Count/veterinary , Cell Count/methods , Italy , Mastitis, Bovine/diagnosis
2.
J Dairy Sci ; 106(3): 1942-1952, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36586801

ABSTRACT

Mastitis has detrimental effects on the world's dairy industry, reducing animal health, milk production and quality, as well as income for farmers. In addition, consumers' growing interest in food safety and rational usage of antibiotics highlights the need to develop novel strategies to improve mastitis detection, prevention, and management. In the present study we applied machine learning (ML) analyses to predict presence or absence of subclinical mastitis in Italian Mediterranean buffaloes, exploiting information collected the previous month during routine milk recording procedures, as well as climatic data. The data set included 3,891 records of 1,038 buffaloes from 6 herds located in Basilicata Region (South Italy). Prediction models were developed using 4 different ML algorithms (Generalized Linear Model, Support Vector Machines, Random Forest, and Neural Network) and 2 data set splitting approaches for the creation of the training and test sets (by record or by animal ID number, always with 80% of the data used for model training and the remaining 20% for model testing). Support Vector Machine was the best method to predict high or low somatic cell count at the subsequent test-day record in the validation set, and therefore it was used to estimate the contribution of each feature to the best model. Independently from the data set splitting approach, the most important features were somatic cell score, differential somatic cell count, electrical conductivity, and milk production. Among climatic data, the most informative were temperature and relative humidity. When the data were split by animal ID, an improvement in models' predictive performance on the test set was observed, suggesting this as the most appropriate data splitting approach in data sets with repeated measures to avoid data leakage. According to different metrics, Neural Network was the best method for making predictions on the test set. Our findings confirmed the promising role of ML methods to improve prevention and surveillance of subclinical mastitis, exploiting the large amount of data currently available to identify animals that would possibly have high somatic cell count the subsequent month.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Animals , Female , Cattle , Milk , Buffaloes , Mastitis, Bovine/epidemiology , Machine Learning , Cell Count/veterinary , Dairying/methods , Italy
3.
J Dairy Sci ; 105(1): 535-548, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34656344

ABSTRACT

Nuclear magnetic resonance spectroscopy was applied to investigate the association between milk metabolome and udder quarter health status in dairy cows. Mammary gland health status was defined by combining information provided by traditional somatic cell count (SCC) and differential SCC (DSCC), which expresses the percentage of neutrophils and lymphocytes over total SCC. Quarter milk samples were collected in triplicate (d 1 to 3) from 10 Simmental cows, 5 defined as cases and 5 defined as controls according to SCC levels at d 0. A total of 120 samples were collected and analyzed for bacteriology, milk composition, SCC, DSCC, and milk metabolome. Bacteriological analysis revealed the presence of mostly coagulase-negative staphylococci in quarter milk samples of cows defined as cases. Nuclear magnetic resonance spectra of all quarter samples were first analyzed using the unsupervised multivariate approach principal component analysis, which revealed a specific metabolomic fingerprint of each cow. Then, the supervised cross-validated orthogonal projections to latent structures discriminant analysis unquestionably showed that each cow could be very well identified according to its milk metabolomic fingerprint (accuracy = 95.8%). The comparison of 12 different models, built on bucketed 1-dimensional NOESY spectra (noesygppr1d, Bruker BioSpin) using different SCC and DSCC thresholds, corroborated the assumption of improved udder health status classification ability by joining information provided by both SCC and DSCC. Univariate analysis performed on the 34 quantitated metabolites revealed lower levels of riboflavin, galactose, galactose-1-phosphate, dimethylsulfone, carnitine, hippurate, orotate, lecithin, succinate, glucose, and lactose, and greater levels of lactate, phenylalanine, choline, acetate, O-acetylcarnitine, 2-oxoglutarate, and valine, in milk samples with high somatic cells. In the 5 cases, results of the udder quarter with the highest SCC compared with its symmetrical relative were in line with quarter-level findings. Our study suggests that increased SCC is associated with changes in milk metabolite fingerprint and highlights the potential use of different metabolites as novel indicators of udder health status and milk quality.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Animals , Cattle , Cell Count/veterinary , Female , Health Status , Magnetic Resonance Spectroscopy , Mammary Glands, Animal , Milk
4.
J Dairy Sci ; 103(10): 9207-9212, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32773306

ABSTRACT

Milk urea nitrogen (MUN), a trait routinely measured in the national milk recording system, is a useful indicator of nitrogen utilization efficiency of dairy cows, and selection for MUN and MUN-derived traits could be a valid strategy to produce better animals with regard to efficiency of nitrogen utilization. Therefore, the aim of the present study was to explore the genetic aspects of MUN and new potential indicators of nitrogen efficiency, namely ratios of protein to MUN, casein to MUN, and whey protein to MUN, in the Italian Brown Swiss population. A total of 153,175 test-day records of 10,827 cows in 500 herds were used for genetic analysis. Variance components and heritability of the investigated traits were estimated using single-trait repeatability animal models, whereas genetic and phenotypic correlations between the traits were estimated through bivariate repeatability animal models, including fixed effects of herd-test-date, stage of lactation, parity, calving year, and calving season, and the random effects of additive genetic animal, cow permanent environment, and the residual. Heritability estimates for MUN (0.20 ± 0.01) and the 3 new indicators of nitrogen utilization efficiency (0.15 ± 0.01 for protein-to-MUN and casein-to-MUN ratios, and 0.12 ± 0.01 for ratio of whey protein to MUN) suggested that additive genetic variation exists for these traits, and thus there is potential to select for greater organic nitrogen and lower inorganic nitrogen in milk. Genetic association between MUN and the 3 ratios was high (-0.87 ± 0.01) but not unity, suggesting that ratios could provide some further information beyond that provided by MUN with regard to efficiency of nitrogen utilization. Genetic trend of the investigated traits by year of birth of Brown Swiss sires showed how the selection applied in the last 30 yr has led to an increase of both quantity and quality of milk, and a decrease of somatic cell score and MUN. The inclusion of MUN in breeding programs could speed up the process of increasing organic nitrogen such as protein, which is useful for cheese-making, and reducing inorganic nitrogen (MUN) in milk.


Subject(s)
Cattle/genetics , Cattle/metabolism , Milk/chemistry , Nitrogen/metabolism , Urea/metabolism , Animals , Female , Lactation/genetics , Milk Proteins/metabolism , Selective Breeding , Urea/chemistry , Whey Proteins/analysis
5.
J Dairy Sci ; 102(5): 4275-4279, 2019 May.
Article in English | MEDLINE | ID: mdl-30827547

ABSTRACT

The aim of the present study was to assess genetic variation and heritability of a novel indicator of udder health, milk differential somatic cell count (DSCC), which represents the percentage of neutrophils plus lymphocytes in the total somatic cell count (SCC). Furthermore, we estimated genetic and phenotypic correlations of DSCC with other milk traits routinely measured in Italian Holstein cows. Besides DSCC, test-day data included milk yield, composition traits (i.e., fat, protein, casein, and lactose percentages), pH, milk urea nitrogen, and SCC. After editing, the final data set included 10,709 test-day records of 5,142 cows in 299 herds. Mean of DSCC was 62.07%, which means that macrophages were approximately 38% of total SCC. Comparing our results with the literature offered compelling evidence of the importance of acquiring information about the proportion of the different cell types in milk to better define the udder health status. In addition, our analysis revealed, for the first time, that DSCC is a heritable trait, and heritability (0.08 ± 0.02) was higher than that of traditional somatic cell score (0.04 ± 0.02). Nevertheless, heritability of DSCC is still low compared with milk yield and quality traits. Single-trait analysis within parity showed that DSCC was less heritable in primiparous than in multiparous cows, whereas bivariate analysis confirmed that DSCC and somatic cell score were 2 different traits, as their genetic and phenotypic correlations differed from unity. From a genetic point of view, the DSCC was positively weakly associated with milk yield, lactose percentage, and milk urea nitrogen, and negatively associated with pH. Our findings contributed to the understanding of the genetic background of DSCC and are a precursor to the potential use of DSCC in breeding programs to enhance cow resistance to mastitis. However, further research is needed to determine the weight this novel trait should receive in a selection program aimed to reduce udder health problems.


Subject(s)
Cattle/genetics , Milk/cytology , Animals , Breeding , Caseins/analysis , Cell Count/veterinary , Female , Italy , Lactose/analysis , Lymphocyte Count , Lymphocytes , Macrophages , Mammary Glands, Animal , Milk/chemistry , Neutrophils , Nitrogen/analysis , Parity , Pregnancy
6.
J Dairy Sci ; 101(11): 10001-10010, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30146278

ABSTRACT

The aim of the present study was to characterize alternative somatic cell count (SCC) traits that could be exploited in genetic selection for mastitis resistance. Data were from 66,407 first-parity Holsteins in 404 herds. Novel SCC traits included average somatic cell score (SCS, log-transformation of SCC) in early lactation (SCS_150), standard deviation of SCS of the entire lactation (SCS_SD), the presence of at least one test-day (TD) SCC >400,000 cells/mL in the lactation, and the ratio of number of TD SCC >400,000 cells/mL to total number of TD in the lactation. Novel traits and lactation-mean SCS (SCS_LM) were analyzed using linear mixed or logistic regression models, including month of calving, year of calving, number of TD, and milk yield as fixed effects, and herd and residual as random terms. A multitrait linear animal model was applied to a random subset of 152 herds (n = 22,695 cows) to assess heritability of and genetic correlations between SCC traits. Alternative SCC traits were affected by the environmental factors included in the model; in particular, results suggested a seasonal effect and a tendency toward an improvement of the udder health status in the last years. Association was also found between novel SCC traits and milk production. Alternative SCC traits exhibited coefficients of additive genetic variation that were similar to or larger than that of traditional SCS_LM. Heritability of novel SCC traits was smaller than heritability of SCS_LM (0.126 ± 0.014), ranging from 0.044 ± 0.008 (SCS_SD) to 0.087 ± 0.010 (SCS_150). Genetic correlations between SCC traits ranged from 0.217 ± 0.096 (SCS_150 and SCS_SD) to 0.969 ± 0.010 (SCS_LM and SCS_150). Alternative SCC traits exhibited additive genetic variation that is potentially exploitable in breeding programs of Italian Holstein population to improve resistance to mastitis.


Subject(s)
Breeding/methods , Cattle/genetics , Mastitis, Bovine/genetics , Milk/cytology , Animals , Cell Count/veterinary , Disease Resistance , Female , Genetic Variation , Italy , Lactation/genetics , Linear Models , Logistic Models , Mammary Glands, Animal , Mastitis, Bovine/pathology , Phenotype , Pregnancy , Seasons , Selection, Genetic
7.
J Dairy Sci ; 101(9): 8087-8091, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30007808

ABSTRACT

The aim of the present study was to determine the allele frequencies of the diacylglycerol acyltransferase (DGAT1) K232A mutation in Italian Holstein bulls and to estimate the effect of the mutation on milk yield, composition, somatic cell score, and coagulation traits (rennet coagulation time and curd firmness). For this purpose, 349 Italian Holstein bulls were genotyped for the DGAT1 mutation on chromosome 14. Association analysis was performed by regressing the number of copies for the K allele on the deregressed estimated breeding value of the individual. Breeding values were calculated using field data routinely collected in Northeast Italy. The frequencies of the AA, KA, and KK genotypes were 59.6, 32.1, and 8.3%, respectively, and the minor allele frequency (K variant) was 24.7%. The K allele was significantly associated with greater fat yield and fat, protein, and casein percentages and with reduced protein:fat ratio. The association between the DGAT1 mutation and somatic cell score was not significant, whereas a favorable association between presence of the K allele and milk coagulation properties was found. Results from the present study confirmed the effect of the diallelic DGAT1 polymorphism K232A on milk production traits and, for the first time, provided evidence that this mutation also affects milk coagulation properties in the Italian Holstein breed.


Subject(s)
Cattle/genetics , Diacylglycerol O-Acyltransferase/genetics , Genotype , Lactation/genetics , Milk , Animals , Chromosomes, Mammalian , Female , Italy , Male , Milk/cytology , Milk/metabolism , Mutation
8.
J Dairy Sci ; 100(12): 9775-9780, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29031876

ABSTRACT

The aim of this study was to investigate the association between udder health (UH) status and blood serum proteins (i.e., total protein, albumin, globulin, and albumin-to-globulin ratio) in dairy cows. Blood and milk samples were collected from 1,508 cows of 6 different breeds (Holstein Friesian, Brown Swiss, Jersey, Simmental, Rendena, and Alpine Grey) that were housed in 41 multibreed herds. Bacteriological analysis was performed on milk samples with somatic cell count (SCC) >100,000 cells/mL and bacteria identification was confirmed by multiplex-PCR assays. Milk samples were grouped into 7 clusters of UH status: healthy (cows with milk SCC <100,000 cells/mL and not cultured); culture-negative samples with low, medium, or high SCC; and culture-positive samples with contagious, environmental, and opportunistic intramammary infections. Data of blood serum proteins were analyzed using a linear mixed model that included the fixed effects of stage of lactation, parity, breed, herd productivity (high or low production) and UH status, and the random effect of herd-date within herd productivity. Culture-negative samples with high milk SCC, which were most likely undergoing a strong inflammatory response and whose pathogens could not be isolated because they were engulfed by macrophages or because they had already cleared, and milk samples infected by contagious and environmental bacteria were associated with greater globulin concentrations (and lower albumin-to-globulin ratio) in blood. Variation in blood serum proteins seems to be associated with inflammatory status rather than infection, as serum globulin significantly increased in UH status groups with the highest milk SCC and no differences were observed among intramammary infections pathogens. Blood serum proteins can be a mammary gland inflammation indicator, but cannot be used to differentiate among different UH status groups.


Subject(s)
Blood Proteins/metabolism , Health Status , Mammary Glands, Animal/physiopathology , Animals , Cattle , Dairying , Female , Italy , Mammary Glands, Animal/microbiology , Mastitis, Bovine/microbiology
9.
Animal ; 11(12): 2309-2319, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28560948

ABSTRACT

Blood serum proteins are significant indicators of animal health. Nevertheless, several factors should be considered to appropriately interpret their concentrations in blood. Therefore, the objectives of this study were (1) to assess the effect of herd productivity, breed, age and stage of lactation on serum proteins and (2) to investigate association between serum proteins and somatic cell count (SCC) in dairy cattle. Milk and blood samples were collected from 1508 cows of six different breeds (Holstein Friesian, Brown Swiss, Jersey, Simmental, Rendena and Alpine Grey) that were housed in 41 multi-breed herds. Milk samples were analyzed for composition and SCC, while blood samples were analyzed for serum proteins (i.e. total protein, albumin, globulin and albumin-to-globulin ratio (A : G)). Herds were classified as low or high production, according to the cow's average daily milk energy yield adjusted for breed, days in milk (DIM) and parity. Data were analyzed using a linear mixed model that included the fixed effects of DIM, parity, SCS, breed, herd productivity and the random effect of the Herd-test date within productivity level. Cows in high producing herds (characterized also by greater use of concentrates in the diet) had greater serum albumin concentrations. Breed differences were reported for all traits, highlighting a possible genetic mechanism. The specialized breed Jersey and the two dual-purpose local breeds (Alpine Grey and Rendena) had the lowest globulin concentration and greatest A : G. Changes in serum proteins were observed through lactation. Total protein reached the highest concentration during the 4th month of lactation. Blood albumin increased with DIM following a quadratic pattern, while globulin decreased linearly. As a consequence, A : G increased linearly during lactation. Older cows had greater total protein and globulin concentrations, while albumin concentration seemed to be not particularly affected by age. A linear relationship between serum proteins and SCS was observed. High milk SCS was associated with greater total protein and globulin concentrations in blood. The rise in globulin concentration, together with a decrease in albumin concentrations, resulted in a decline in A : G as SCS of milk increased. In conclusion, such non-genetic factors must be considered to appropriately interpret serum proteins as potential animal welfare indicator and their evaluation represents an important first-step for future analysis based on the integration of metabolomics, genetic and genomic information for improving the robustness of dairy cows.


Subject(s)
Animal Welfare , Blood Proteins/analysis , Cattle/blood , Milk/chemistry , Animals , Cell Count/veterinary , Dairying , Diet/veterinary , Female , Lactation , Milk/metabolism , Parity , Phenotype , Pregnancy , Serum Albumin/analysis , Serum Globulins/analysis , Species Specificity
10.
J Dairy Sci ; 100(6): 4868-4883, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28365113

ABSTRACT

The aim of this study was to investigate associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits. Forty-one multibreed herds were selected for the study, and composite milk samples were collected from 1,508 cows belonging to 3 specialized dairy breeds (Holstein Friesian, Brown Swiss, and Jersey) and 3 dual-purpose breeds of Alpine origin (Simmental, Rendena, and Grey Alpine). Milk composition [i.e., fat, protein, casein, lactose, pH, urea, and somatic cell count (SCC)] was analyzed, and separation of protein fractions was performed by reversed-phase high performance liquid chromatography. Eleven coagulation traits were measured: 5 traditional milk coagulation properties [time from rennet addition to milk gelation (RCT, min), curd-firming rate as the time to a curd firmness (CF) of 20 mm (k20, min), and CF at 30, 45, and 60 min from rennet addition (a30, a45, and a60, mm)], and 6 new curd firming and syneresis traits [potential asymptotical CF at an infinite time (CFP, mm), curd-firming instant rate constant (kCF, % × min-1), curd syneresis instant rate constant (kSR, % × min-1), modeled RCT (RCTeq, min), maximum CF value (CFmax, mm), and time at CFmax (tmax, min)]. We also measured 3 cheese yield traits, expressing the weights of total fresh curd (%CYCURD), dry matter (%CYSOLIDS), and water (%CYWATER) in the curd as percentages of the weight of the processed milk, and 4 nutrient recovery traits (RECPROTEIN, RECFAT, RECSOLIDS, and RECENERGY), representing the percentage ratio between each nutrient in the curd and milk. Milk samples with SCC > 100,000 cells/mL were subjected to bacteriological examination. All samples were divided into 7 clusters of udder health (UH) status: healthy (cows with milk SCC < 100,000 cells/mL and uncultured); culture-negative samples with low, medium, or high SCC; and culture-positive samples divided into contagious, environmental, and opportunistic intramammary infection (IMI). Data were analyzed using a linear mixed model. Significant variations in the casein to protein ratio and lactose content were observed in all culture-positive samples and in culture-negative samples with medium to high SCC compared to normal milk. No differences were observed among contagious, environmental, and opportunistic pathogens, suggesting an effect of inflammation rather than infection. The greatest impairment in milk quantity and composition, clotting ability, and cheese production was observed in the 2 UH status groups with the highest milk SCC (i.e., contagious IMI and culture-negative samples with high SCC), revealing a discrepancy between the bacteriological results and inflammatory status, and thus confirming the importance of SCC as an indicator of udder health and milk quality.


Subject(s)
Cheese , Mastitis, Bovine/microbiology , Milk Proteins/analysis , Milk/metabolism , Animals , Caseins/analysis , Cattle , Cell Count/veterinary , Chromatography, Reverse-Phase/veterinary , Dairying/methods , Female , Lactation , Mastitis, Bovine/physiopathology , Milk/chemistry , Milk/standards , Phenotype
11.
J Dairy Sci ; 100(1): 129-145, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27837976

ABSTRACT

Milk coagulation properties (MCP) have been widely investigated in the past using milk collected from different cattle breeds and herds. However, to our knowledge, no previous studies have assessed MCP in individual milk samples from several multi-breed herds characterized by either high or low milk productivity, thereby allowing the effects of herd and cow breed to be evaluated independently. Multi-breed herds (n=41) were classified into 2 categories based on milk productivity (high vs. low), defined according to the average milk net energy yielded daily by lactating cows. Milk samples were taken from 1,508 cows of 6 different breeds: 3 specialized dairy (Holstein-Friesian, Brown Swiss, Jersey) and 3 dual-purpose (Simmental, Rendena, Alpine Grey) breeds, and analyzed in duplicate (3,016 tests) using 2 lactodynamographs to obtain 240 curd firming (CF) measurements over 60min (1 every 15 s) for each duplicate. The 5 traditional single-point MCP (RCT, k20, a30, a45, and a60) were yielded directly by the instrument from the available CF measures. All 240 CF measures of each replicate were also used to estimate 4 individual equation parameters: RCT estimated according to curd firm change over time modeling (RCTeq), asymptotic potential curd firmness (CFP), curd firming instant rate constant (kCF), and syneresis instant rate constant (kSR) and 2 derived traits: maximum curd firmness achieved within 45min (CFmax) and time at achievement of CFmax (tmax) by curvilinear regression using a nonlinear procedure. Results showed that the effect of herd-date on traditional and modeled MCP was modest, ranging from 6.1% of total variance for k20 to 10.7% for RCT, whereas individual animal variance was the highest, ranging from 32.0% for tmax to 82.5% for RCTeq. The repeatability of MCP was high (>80%) for all traits except those associated with the last part of the lactodynamographic curve (i.e., a60, kSR, kCF, and tmax: 57 to 71%). Reproducibility, taking into account the effect of instrument, was equal to or slightly lower than repeatability. Milk samples collected in farms characterized by high productivity exhibited delayed coagulation (RCTeq: 18.6 vs. 16.3min) but greater potential curd firmness (CFP: 76.8 vs. 71.9mm) compared with milk samples collected from low-productivity herds. Parity and days in milk influenced almost all MCP. Large differences in all MCP traits were observed among breeds, both between specialized and dual-purpose breeds and within these 2 groups of breeds, even after adjusting for milk quality and yield. Milk quality and MCP of samples from Jersey cows, and coagulation time of samples from Rendena cows were better than in milk from Holstein-Friesian cows, and intermediate results were found with the other breeds of Alpine origin. The results of this study, taking into account the intrinsic limitation of this technique, show that the effects of breed on traditional and modeled MCP are much greater than the effects of herd productivity class, parity, and DIM. Moreover, the variance in individual animals is much greater than the variance in individual herds within herd productivity class. It seems that improvement in MCP depends more on genetics (e.g., breed, selection) than on environmental and management factors.


Subject(s)
Lactation , Milk , Animals , Breeding , Cattle , Female , Phenotype , Reproducibility of Results
12.
J Dairy Sci ; 99(7): 5104-5119, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27179860

ABSTRACT

The aim of this study was to investigate the relationships between somatic cell count (SCC) in milk and several milk technological traits at the individual cow level. In particular, we determined the effects of very low to very high SCC on traits related to (1) milk yield and composition; (2) coagulation properties, including the traditional milk coagulation properties (MCP) and the new curd firming model parameters; and (3) cheese yield and recovery of milk nutrients in the curd (or loss in the whey). Milk samples from 1,271 Brown Swiss cows from 85 herds were used. Nine coagulation traits were measured: 3 traditional MCP [rennet coagulation time (RCT, min), curd firming rate (k20, min), and curd firmness after 30 min (a30, mm)] and 6 new curd firming and syneresis traits [potential asymptotic curd firmness at infinite time (CFP, mm), curd firming instant rate constant (kCF, % × min(-1)), syneresis instant rate constant (kSR, % × min(-1)), rennet coagulation time estimated using the equation (RCTeq, min), maximum curd firmness achieved within 45 min (CFmax, mm), and time at achievement of CFmax (tmax, min)]. The observed cheese-making traits included 3 cheese yield traits (%CYCURD, %CYSOLIDS, and %CYWATER, which represented the weights of curd, total solids, and water, respectively, as a percentage of the weight of the processed milk) and 4 nutrient recoveries in the curd (RECFAT, RECPROTEIN, RECSOLIDS, and RECENERGY, which each represented the percentage ratio between the nutrient in the curd and milk). Data were analyzed using a linear mixed model with the fixed effects of days in milk, parity, and somatic cell score (SCS), and the random effect of herd-date. Somatic cell score had strong influences on casein number and lactose, and also affected pH; these were traits characterized by a quadratic pattern of the data. The results also showed a negative linear relationship between SCS and milk yield. Somatic cell score influenced almost all of the tested coagulation traits (both traditional and modeled), with the exceptions of k20, CFP, and kSR. Gelation was delayed when the SCS decreased (slightly) and when it increased (strongly) with respect to a value of 2, as confirmed by the quadratic patterns observed for both RCT and RCTeq. The SCS effect on a30 showed a quadratic pattern almost opposite to that observed for RCT. With respect to the CFt parameters, kCF decreased linearly as SCS increased, resulting in a linear decrease of CFmax and a quadratic pattern for tmax. Milk SCS attained significance for %CYCURD, %CYWATER, and RECPROTEIN. As the SCS increased beyond 3, we observed a progressive quadratic decrease of the water retained in the curd (%CYWATER), which caused a parallel decrease in %CYCURD. With respect to RECPROTEIN, the negative effect of SCS was almost linear. Recovery of fat and (consequently) RECENERGY was characterized by a more evident quadratic trend, with the most favorable values associated with an intermediate SCS. Together, our results confirmed that high SCS has a negative effect on milk composition and technological traits, highlighting the nonlinear trends of some traits across the different classes of SCS. Moreover, we report that a very low SCS has a negative effect on some technological traits of milk.


Subject(s)
Cell Count/veterinary , Cheese/analysis , Milk/chemistry , Animals , Cattle , Female , Models, Theoretical
13.
Animal ; 9(7): 1104-12, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25823422

ABSTRACT

The aims of this study were to estimate the genetic variation of traditional milk coagulation properties (MCPs), milk acidity, curd firmness (CF) modeled on time t (CF(t) ; comprising: RCT(eq), rennet coagulation time estimated from the equation; CF(P), the asymptotic potential curd firmness; k(CF), the curd firming instant rate constant; and k(SR), the syneresis instant rate constant) and maximum CF traits (MCF; comprising CF(max), the maximum CF value; and tmax, the time of attainment). Furthermore, we investigated 96 single nucleotide polymorphisms (SNPs) from 54 candidate genes, testing their associations with the above-listed traits. Milk and blood samples were collected from 1271 cows (each sampled once) from 85 herds. Genotyping was performed using a custom Illumina VeraCode GoldenGate approach. A Bayesian linear animal model (including the effects of herd, days in milk, parity and additive polygenic effects) was used to estimate the genetic parameters of the studied traits. The same model with the addition of the SNP genotype effect was used for our association analysis. The heritability estimates of CF t and the MCF traits (RCT(eq)=0.258; k(CF)=0.230; CF(max)=0.191; t(max)=0.278) were similar to those obtained using traditional MCPs (0.187 to 0.267), except for the lower estimates for CF(P) (0.064) and k(SR) (0.077). A total of 13 of the 51 tested SNPs had relevant additive effects on at least one trait. We observed associations between MCPs and SNPs in the genes encoding ATP-binding cassette sub-family G member 2 (ABCG2), chemokine ligand 2 (CCL2), growth hormone 1 (GH1), prolactin (PRL) and toll-like receptor 2 (TLR2). Whereas, CF(t) and the MCF traits were associated with polymorphisms in the α-s1-casein (CSN1S1), ß-casein (CSN2), GH1, oxidized low-density lipoprotein receptor 1 (OLR1), phospholipase C ß1 (PLCB1), PRL and signal transducer and activator of transcription 5A (STAT5A) genes.


Subject(s)
Caseins/analysis , Cattle/genetics , Genetic Variation , Milk/chemistry , Models, Biological , ATP-Binding Cassette Transporters/genetics , Animals , Bayes Theorem , Caseins/genetics , Chymosin/chemistry , Female , Genotype , Growth Hormone/genetics , Phospholipase C beta/genetics , Prolactin/genetics , STAT5 Transcription Factor/genetics , Scavenger Receptors, Class E/genetics , Toll-Like Receptor 2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...