Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 378(Pt 2): 665-71, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-14651475

ABSTRACT

Long-chain n-3 PUFAs (polyunsaturated fatty acids) such as EPA (eicosapentaenoic acid; 20:5 n-3) have important therapeutic and nutritional benefits in humans. In plants, cyanobacteria and nematodes, omega3-desaturases catalyse the formation of these n-3 fatty acids from n-6 fatty acid precursors. Here we describe the isolation and characterization of a gene ( sdd17 ) derived from an EPA-rich fungus, Saprolegnia diclina, that encodes a novel omega3-desaturase. This gene was isolated by PCR amplification of an S. diclina cDNA library using oligonucleotide primers corresponding to conserved regions of known omega3-desaturases. Expression of this gene in Saccharomyces cerevisiae, in the presence of various fatty acid substrates, revealed that the recombinant protein could exclusively desaturate 20-carbon n-6 fatty acid substrates with a distinct preference for ARA (arachidonic acid; 20:4 n-6), converting it into EPA. This activity differs from that of the known omega3-desaturases from any organism. Plant and cyanobacterial omega3-desaturases exclusively desaturate 18-carbon n-6 PUFAs, and a Caenorhabditis elegans omega3-desaturase preferentially desaturated 18-carbon PUFAs over 20-carbon substrates, and could not convert ARA into EPA when expressed in yeast. The sdd17 -encoded desaturase was also functional in transgenic somatic soya bean embryos, resulting in the production of EPA from exogenously supplied ARA, thus demonstrating its potential for use in the production of EPA in transgenic oilseed crops.


Subject(s)
Eicosapentaenoic Acid/biosynthesis , Fatty Acid Desaturases/metabolism , Saprolegnia/enzymology , Amino Acid Sequence , Arachidonic Acids/metabolism , Embryo, Mammalian/metabolism , Embryo, Nonmammalian , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/physiology , Fatty Acids/analysis , Genes, Fungal , Molecular Sequence Data , Phylogeny , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid , Glycine max/embryology , Glycine max/metabolism
2.
Lipids ; 37(8): 733-40, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12371743

ABSTRACT

In mammalian cells, Sprecher has proposed that the synthesis of long-chain PUFA from the 20-carbon substrates involves two consecutive elongation steps, a delta6-desaturation step followed by retroconversion (Sprecher, H., Biochim. Biophys. Acta 1486, 219-231, 2000). We searched the database using the translated sequence of human elongase ELOVL5, whose encoded enzyme elongates monounsaturated and polyunsaturated FA, as a query to identify the enzyme(s) involved in elongation of very long chain PUFA. The database search led to the isolation of two cDNA clones from human and mouse. These clones displayed deduced amino acid sequences that had 56.4 and 58% identity, respectively, to that of ELOVL5. The open reading frame of the human clone (ELOVL2) encodes a 296-amino acid peptide, whereas the mouse clone (Elovl2) encodes a 292-amino acid peptide. Expression of these open reading frames in baker's yeast, Saccharomyces cerevisiae, demonstrated that the encoded proteins were involved in the elongation of both 20- and 22-carbon long-chain PUFA, as determined by the conversion of 20:4n-6 to 22:4n-6, 22:4n-6 to 24:4n-6, 20:5n-3 to 22:5n-3, and 22:5n-3 to 24:5n-3. The elongation activity of the mouse Elovl2 was further demonstrated in the transformed mouse L cells incubated with long-chain (C20- and C22-carbon) n-6 and n-3 PUFA substrates by the significant increase in the levels of 24:4n-6 and 24:5n-3, respectively. This report demonstrates the isolation and identification of two mammalian genes that encode very long chain PUFA specific elongation enzymes in the Sprecher pathway for DHA synthesis.


Subject(s)
Acetyltransferases/genetics , Acetyltransferases/metabolism , Fatty Acids, Omega-3/biosynthesis , Fatty Acids, Unsaturated/biosynthesis , Amino Acid Sequence , Animals , Blotting, Northern , Cloning, Molecular , DNA, Complementary/genetics , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases , Fatty Acids, Omega-6 , Gas Chromatography-Mass Spectrometry , Genetic Vectors/genetics , Humans , Mice , Molecular Sequence Data , Open Reading Frames/genetics , Organ Specificity , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...