Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 842, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987383

ABSTRACT

Identifying high-affinity antibodies in human serum is challenging due to extremely low number of circulating B cells specific to the desired antigens. Delays caused by a lack of information on the immunogenic proteins of viral origin hamper the development of therapeutic antibodies. We propose an efficient approach allowing for enrichment of high-affinity antibodies against pathogen proteins with simultaneous epitope mapping, even in the absence of structural information about the pathogenic immunogens. To screen therapeutic antibodies from blood of recovered donors, only pathogen transcriptome is required to design an antigen polypeptide library, representing pathogen proteins, exposed on the bacteriophage surface. We developed a two-dimensional screening approach enriching lentiviral immunoglobulin libraries from the convalescent or vaccinated donors against bacteriophage library expressing the overlapping set of polypeptides covering the spike protein of SARS-CoV-2. This platform is suitable for pathogen-specific immunoglobulin enrichment and allows high-throughput selection of therapeutic human antibodies.


Subject(s)
COVID-19 , High-Throughput Screening Assays , Peptide Library , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/virology , High-Throughput Screening Assays/methods , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Immunoglobulins/immunology , Immunoglobulins/genetics , Antibodies, Viral/immunology , Epitope Mapping/methods
2.
Sci Rep ; 9(1): 8937, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222180

ABSTRACT

The heterogeneity of metabolic reactions leads to a non-uniform distribution of temperature in different parts of the living cell. The demand to study normal functioning and pathological abnormalities of cellular processes requires the development of new visualization methods. Previously, we have shown that the 35-kDa photoswitchable Orange Carotenoid Protein (OCP) has a strong temperature dependency of photoconversion rates, and its tertiary structure undergoes significant structural rearrangements upon photoactivation, which makes this protein a nano-sized temperature sensor. However, the determination of OCP conversion rates requires measurements of carotenoid absorption, which is not suitable for microscopy. In order to solve this problem, we fused green and red fluorescent proteins (TagGFP and TagRFP) to the structure of OCP, producing photoactive chimeras. In such chimeras, electronic excitation of the fluorescent protein is effectively quenched by the carotenoid in OCP. Photoactivation of OCP-based chimeras triggers rearrangements of complex geometry, permitting measurements of the conversion rates by monitoring changes of fluorescence intensity. This approach allowed us to determine the local temperature of the microenvironment. Future directions to improve the OCP-based sensor are discussed.


Subject(s)
Bacterial Proteins/metabolism , Carotenoids/metabolism , Spectrometry, Fluorescence/methods , Temperature , Fluorescence Resonance Energy Transfer , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...