Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 18(18): 3521-3530, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35438127

ABSTRACT

Needle insertion into soft biological tissues is a common process in various surgical procedures. During insertion, soft biological tissues with different water contents undergo large deformation often leading to uncontrollable cracks and tissue damage. Despite the numerous experimental studies and numerical modelling of needle-tissue interaction, the results do not show any consistency mainly due to the heterogeneity of tissue properties and opaqueness. In this context, understanding the fracture behaviour of soft tissues during needle insertion is important for minimally invasive surgeries and other medical procedures. Recently, we showed that the needle insertion into a transparent, tissue-mimicking polyacrylamide (PAAm) hydrogel causes periodic cone cracks. In this work, we systematically varied the water content of the PAAm hydrogel in the preparation state and performed needle insertion experiments using a hypodermic needle at a constant velocity to study the fracture characteristics of the PAAm hydrogel. The results show that the number of peaks, the magnitudes of the insertion forces, and corresponding cone cracks decrease with increasing water content. Furthermore, we discussed the influence of water on cone crack fracture characteristics, cone angle, periodicity, crack speed and fracture energy release rate. These results provide a better understanding of the fracture processes of soft tissues with different water concentrations such as the lung, liver, and brain during needle insertion and the control of tissue damage during needle insertion involved in medical procedures.


Subject(s)
Hydrogels , Needles , Brain , Water
2.
Soft Matter ; 17(10): 2823-2831, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33554985

ABSTRACT

Needle insertion, a standard process for various minimally invasive surgeries, results in tissue damage which sometimes leads to catastrophic outcomes. Opaqueness and inhomogeneity of the tissues make it difficult to observe the underlying damage mechanisms. In this paper, we use transparent and homogeneous polyacrylamide hydrogel as a tissue mimic to investigate the damages caused during needle insertion. The insertion force shows multiple events, characterised by a gradual increase in the force followed by a sharp fall. Synchronised recording of the needle displacement into the gel shows that each event corresponds to propagation of stable cone crack. Though sporadic uncontrolled cracking has been discussed earlier, this is the first report of nearly periodic, stable and well-controlled 3-D cone cracks inside the hydrogel during deep penetration. We show that the stress field around the needle tip is responsible for the symmetry and periodicity of the cone cracks. These results provide a better understanding of the fracture processes in soft and brittle materials and open a promising perspective in needle designs and the control of tissue damages during surgical operations.


Subject(s)
Hydrogels , Needles
3.
Soft Matter ; 16(16): 4065-4073, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32286599

ABSTRACT

Thin polymer and polymer nanocomposite (PNC) films are being extensively used as advanced functional coating materials in various technological applications. Since it is widely known that various properties of these thin films, especially their thermo-mechanical behavior, can be considerably different from the bulk depending on the thickness as well as interaction with surrounding media, it is imperative to study these properties directly on the films. However, quite often, it becomes difficult to perform these measurements reliably due to a dearth of techniques, especially to measure mechnical or transport properties like the viscosity of thin polymer or PNC films. Here, we demonstrate a new method to study the viscosity of PNC thin films using atomic force microscopy based force-distance spectroscopy. Using this method we investigated viscosity and the glass transition, Tg, of PNC thin films consisting of polymer grafted nanoparticles (PGNPs) embedded in un-entangled homopolymer melt films. The PGNP-polymer interfacial entropic interaction parameter, f, operationally controlled through the ratio of grafted and matrix molecular weight, was systematically tuned while maintaining good dispersion even at very high PGNP loadings, φ. We observed both a significant reduction (low f) and giant enhancement (high f) in the viscosity of the PNC thin films with the effect becoming more prominent with increasing φ. Significantly, none of the established theoretical models for viscosity changes observed earlier in suspensions or polymer nanocomposites can explain the observed viscosity variation. Our results thus not only demonstrate the tunability of the interfacial entropic effect to facilitate a dramatic change in the viscosity of PNC coatings, which could be of great utility in various applications of these materials, but also suggest a new regime of viscosity variation in athermal PNC films indicating the possible need for a new theoretical model.

4.
J Nanosci Nanotechnol ; 19(7): 4254-4259, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30765001

ABSTRACT

Metallic nanowire networks are emerging as potential replacements for transparent conducting oxide coatings because of their high conductivity, flexibility and relative transparency. However, a cheap, reliable and controlled manufacturing process is required to exploit this and the surface of the copper nanowire needs to be protected if high conductivity is to be retained. In this study a fabrication method for highly aligned and densely packed copper nanowires with controlled length using pulse-electrodeposition and a nanoporous alumina template has been developed. Nanoporous alumina was obtained by anodisation of pure aluminum in oxalic acid using a two-step anodisation process. In order to provide the conductivity at the bottom of the pores, a dendritic structure at the interface was created through the stepwise voltage reduction method with a voltage reduction rate of 15 V/s followed by mild chemical etching. Highly repeatable near 100% filling of copper is achieved. Copper nanowire length was highly controllable from 100 nm to 2 µm with a fixed diameter of 60 ± 5 nm by monitoring current density during the deposition. Such controlled growth of Cu nanowires could lead towards transparent conducting layer applications but the protection of the material against oxidation remains an issue.

5.
J Mech Behav Biomed Mater ; 53: 161-173, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26327451

ABSTRACT

Atomic force Microscopy (AFM) has become a versatile tool in biology due to its advantage of high-resolution imaging of biological samples close to their native condition. Apart from imaging, AFM can also measure the local mechanical properties of the surfaces. In this study, we explore the possibility of using AFM to quantify the rough eye phenotype of Drosophila melanogaster through mechanical properties. We have measured adhesion force, stiffness and elastic modulus of the corneal lens using AFM. Various parameters affecting these measurements like cantilever stiffness and tip geometry are systematically studied and the measurement procedures are standardized. Results show that the mean adhesion force of the ommatidial surface varies from 36 nN to 16 nN based on the location. The mean stiffness is 483 ± 5 N/m, and the elastic modulus is 3.4 ± 0.05 GPa (95% confidence level) at the center of ommatidia. These properties are found to be different in corneal lens of eye expressing human mutant tau gene (mutant). The adhesion force, stiffness and elastic modulus are decreased in the mutant. We conclude that the measurement of surface and mechanical properties of D. melanogaster using AFM can be used for quantitative evaluation of 'rough eye' surface.


Subject(s)
Cornea , Drosophila melanogaster , Elasticity , Lens, Crystalline , Microscopy, Atomic Force , Adhesiveness , Animals , Biomechanical Phenomena , Cornea/metabolism , Female , Humans , Lens, Crystalline/metabolism , Mutation , tau Proteins/genetics
6.
Rev Sci Instrum ; 85(10): 105006, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25362448

ABSTRACT

Resonant sensors and crystal oscillators for mass detection need to be excited at very high natural frequencies (MHz). Use of such systems to measure mass of biological materials affects the accuracy of mass measurement due to their viscous and/or viscoelastic properties. The measurement limitation of such sensor system is the difficulty in accounting for the "missing mass" of the biological specimen in question. A sensor system has been developed in this work, to be operated in the stiffness controlled region at very low frequencies as compared to its fundamental natural frequency. The resulting reduction in the sensitivity due to non-resonant mode of operation of this sensor is compensated by the high resolution of the sensor. The mass of different aged drosophila melanogaster (fruit fly) is measured. The difference in its mass measurement during resonant mode of operation is also presented. That, viscosity effects do not affect the working of this non-resonant mass sensor is clearly established by direct comparison.


Subject(s)
Electrical Equipment and Supplies , Animals , Drosophila melanogaster/chemistry , Equipment Design , Larva/chemistry , Models, Theoretical , Molecular Weight , Ovum/chemistry , Viscosity
7.
Nanotechnology ; 22(10): 105703, 2011 Mar 11.
Article in English | MEDLINE | ID: mdl-21289398

ABSTRACT

The formation of nanoscale liquid droplets by friction of a solid is observed in real-time. This is achieved using a newly developed in situ transmission electron microscope (TEM) triboprobe capable of applying multiple reciprocating wear cycles to a nanoscale surface. Dynamical imaging of the nanoscale cyclic rubbing of a focused-ion-beam (FIB) processed Al alloy by diamond shows that the generation of nanoscale wear particles is followed by a phase separation to form liquid Ga nanodroplets and liquid bridges. The transformation of a two-body system to a four-body solid-liquid system within the reciprocating wear track significantly alters the local dynamical friction and wear processes. Moving liquid bridges are observed in situ to play a key role at the sliding nanocontact, interacting strongly with the highly mobile nanoparticle debris. In situ imaging demonstrates that both static and moving liquid droplets exhibit asymmetric menisci due to nanoscale surface roughness. Nanodroplet kinetics are furthermore dependent on local frictional temperature, with solid-like surface nanofilaments forming on cooling. TEM nanotribology opens up new avenues for the real-time quantification of cyclic friction, wear and dynamic solid-liquid nanomechanics, which will have widespread applications in many areas of nanoscience and nanotechnology.


Subject(s)
Friction , Microfluidics/methods , Nanostructures/chemistry , Kinetics , Microscopy, Electron, Transmission
8.
Nanotechnology ; 20(30): 305703, 2009 Jul 29.
Article in English | MEDLINE | ID: mdl-19584415

ABSTRACT

A technique to quantify in real time the microstructural changes occurring during mechanical nanoscale fatigue of ultrathin surface coatings has been developed. Cyclic nanoscale loading, with amplitudes less than 100 nm, is achieved with a mechanical probe miniaturized to fit inside a transmission electron microscope (TEM). The TEM tribological probe can be used for nanofriction and nanofatigue testing, with 3D control of the loading direction and simultaneous TEM imaging of the nano-objects. It is demonstrated that fracture of 10-20 nm thick amorphous carbon films on sharp gold asperities, by a single nanoscale shear impact, results in the formation of <10 nm diameter amorphous carbon filaments. Failure of the same carbon films after cyclic nanofatigue, however, results in the formation of carbon nanostructures with a significant degree of graphitic ordering, including a carbon onion.

SELECTION OF CITATIONS
SEARCH DETAIL
...