Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-476031

ABSTRACT

The newly emerging SARS-CoV-2 Omicron (B.1.1.529) variant first identified in South Africa in November 2021 is characterized by an unusual number of amino acid mutations in its spike that renders existing vaccines and therapeutic monoclonal antibodies dramatically less effective. The in vivo pathogenicity, transmissibility, and fitness of this new Variant of Concerns are unknown. We investigated these virological attributes of the Omicron variant in comparison with those of the currently dominant Delta (B.1.617.2) variant in the golden Syrian hamster COVID-19 model. Omicron-infected hamsters developed significantly less body weight losses, clinical scores, respiratory tract viral burdens, cytokine/chemokine dysregulation, and tissue damages than Delta-infected hamsters. The Omicron and Delta variant were both highly transmissible (100% vs 100%) via contact transmission. Importantly, the Omicron variant consistently demonstrated about 10-20% higher transmissibility than the already-highly transmissible Delta variant in repeated non-contact transmission studies (overall: 30/36 vs 24/36, 83.3% vs 66.7%). The Delta variant displayed higher fitness advantage than the Omicron variant without selection pressure in both in vitro and in vivo competition models. However, this scenario drastically changed once immune selection pressure with neutralizing antibodies active against the Delta variant but poorly active against the Omicron variant were introduced, with the Omicron variant significantly outcompeting the Delta variant. Taken together, our findings demonstrated that while the Omicron variant is less pathogenic than the Delta variant, it is highly transmissible and can outcompete the Delta variant under immune selection pressure. Next-generation vaccines and antivirals effective against this new VOC are urgently needed. One Sentence SummaryThe novel SARS-CoV-2 Omicron variant, though less pathogenic, is highly transmissible and outcompetes the Delta variant under immune selection pressure in the golden Syrian hamster COVID-19 model.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-475037

ABSTRACT

The strikingly high transmissibility and antibody evasion of SARS-CoV-2 Omicron variant have posted great challenges on the efficacy of current vaccines and antibody immunotherapy.Here, we screened 34 BNT162b2-vaccinees and cloned a public broadly neutralizing antibody (bNAb) ZCB11 from an elite vaccinee. ZCB11 neutralized all authentic SARS-CoV-2 variants of concern (VOCs), including Omicron and OmicronR346K with potent IC50 concentrations of 36.8 and 11.7 ng/mL, respectively. Functional analysis demonstrated that ZCB11 targeted viral receptor-binding domain (RBD) and competed strongly with ZB8, a known RBD-specific class II NAb. Pseudovirus-based mapping of 57 naturally occurred single mutations or deletions revealed that only S371L resulted in 11-fold neutralization resistance, but this phenotype was not observed in the Omicron variant. Furthermore,prophylactic ZCB11 administration protected lung infection against both the circulating pandemic Delta and Omicron variants in golden Syrian hamsters. These results demonstrated that vaccine-induced ZCB11 is a promising bNAb for immunotherapy against pandemic SARS-CoV-2 VOCs.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-465252

ABSTRACT

BackgroundVaccines in emergency use are efficacious against COVID-19, yet vaccine-induced prevention against nasal SARS-CoV-2 infection remains suboptimal. MethodsSince mucosal immunity is critical for nasal prevention, we investigated an intramuscular PD1-based receptor-binding domain (RBD) DNA vaccine (PD1-RBD-DNA) and intranasal live attenuated influenza-based vaccines (LAIV-CA4-RBD and LAIV-HK68-RBD) against SARS-CoV-2. FindingsSubstantially higher systemic and mucosal immune responses, including bronchoalveolar lavage IgA/IgG and lung polyfunctional memory CD8 T cells, were induced by the heterologous PD1-RBD-DNA/LAIV-HK68-RBD as compared with other regimens. When vaccinated animals were challenged at the memory phase, prevention of robust SARS-CoV-2 infection in nasal turbinate was achieved primarily by the heterologous regimen besides consistent protection in lungs. The regimen-induced antibodies cross-neutralized variants of concerns. Furthermore, LAIV-CA4-RBD could boost the BioNTech vaccine for improved mucosal immunity. InterpretationOur results demonstrated that intranasal influenza-based boost vaccination is required for inducing mucosal and systemic immunity for effective SARS-CoV-2 prevention in both upper and lower respiratory systems. FundingThis study was supported by the Research Grants Council Collaborative Research Fund (C7156-20G, C1134-20G and C5110-20G), General Research Fund (17107019) and Health and Medical Research Fund (19181052 and 19181012) in Hong Kong; Outbreak Response to Novel Coronavirus (COVID-19) by the Coalition for Epidemic Preparedness Innovations; Shenzhen Science and Technology Program (JSGG20200225151410198); the Health@InnoHK, Innovation and Technology Commission of Hong Kong; and National Program on Key Research Project of China (2020YFC0860600, 2020YFA0707500 and 2020YFA0707504); and donations from the Friends of Hope Education Fund. Z.C.s team was also partly supported by the Theme-Based Research Scheme (T11-706/18-N).

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-440414

ABSTRACT

There is a lack of experimental evidence to explain how the B.1.1.7 variant spreads more quickly than pre-existing variants in humans. We found that B.1.1.7 displays increased competitive fitness over earlier D614G lineages in an in-vitro system. Furthermore,, we demonstrated that B.1.1.7 variant is able to replicate and shed more efficiently in the nasal cavity than other variants with lower dose and shorter duration of exposure.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-404483

ABSTRACT

The ongoing pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro and in vivo analyses, we report that Topoisomerase 1 (Top1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of Topotecan (TPT), a FDA-approved Top1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as four days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of Top1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing Top1 inhibitors for COVID-19 in humans.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-271635

ABSTRACT

SARS-CoV-2 causes disease varying in severity from asymptomatic infections to severe respiratory distress and death in humans. The viral factors which determine transmissibility and pathogenicity are not yet clearly characterized. We used the hamster infection model to compare the replication ability and pathogenicity of five SARS-CoV-2 strains isolated from early cases originating in Wuhan, China, in February, and infected individuals returning from Europe and elsewhere in March 2020. The HK-13 and HK-95 isolates showed distinct pathogenicity in hamsters, with higher virus titers and more severe pathological changes in the lungs observed compared to other isolates. HK-95 contains a D614G substitution in the spike protein and demonstrated higher viral gene expression and transmission efficiency in hamsters. Intra-host diversity analysis revealed that further quasi species were generated during hamster infections, indicating that strain-specific adaptive mutants with advantages in replication and transmission will continue to arise and dominate subsequent waves of SARS-CoV-2 dissemination.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-264192

ABSTRACT

SARS-CoV-2 contains a PRRA polybasic cleavage motif considered critical for efficient infection and transmission in humans. We previously reported that virus variants with spike protein S1/S2 junction deletions spanning this motif are attenuated. Here we characterize a further cell-adapted SARS-CoV-2 variant, Ca-DelMut. Ca-DelMut replicates more efficiently than wild type or parental virus in cells, but causes no apparent disease in hamsters, despite replicating in respiratory tissues. Unlike wild type virus, Ca-DelMut does not induce proinflammatory cytokines in hamster infections, but still triggers a strong neutralizing antibody response. Ca-DelMut-immunized hamsters challenged with wild type SARS-CoV-2 are fully protected, demonstrating sterilizing immunity.

SELECTION OF CITATIONS
SEARCH DETAIL
...