Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2402907, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757602

ABSTRACT

Ultrafast laser processing has emerged as a versatile technique for modifying materials and introducing novel functionalities. Over the past decade, this method has demonstrated remarkable advantages in the manipulation of 2D layered materials, including synthesis, structuring, functionalization, and local patterning. Unlike continuous-wave and long-pulsed optical methods, ultrafast lasers offer a solution for thermal heating issues. Nonlinear interactions between ultrafast laser pulses and the atomic lattice of 2D materials substantially influence their chemical and physical properties. This paper highlights the transformative role of ultrafast laser pulses in maskless green technology, enabling subtractive, and additive processes that unveil ways for advanced devices. Utilizing the synergetic effect between the energy states within the atomic layers and ultrafast laser irradiation, it is feasible to achieve unprecedented resolutions down to several nanometers. Recent advancements are discussed in functionalization, doping, atomic reconstruction, phase transformation, and 2D and 3D micro- and nanopatterning. A forward-looking perspective on a wide array of applications of 2D materials, along with device fabrication featuring novel physical and chemical properties through direct ultrafast laser writing, is also provided.

2.
Biosensors (Basel) ; 14(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38785689

ABSTRACT

Graphene-based materials are actively being investigated as sensing elements for the detection of different analytes. Both graphene grown by chemical vapor deposition (CVD) and graphene oxide (GO) produced by the modified Hummers' method are actively used in the development of biosensors. The production costs of CVD graphene- and GO-based sensors are similar; however, the question remains regarding the most efficient graphene-based material for the construction of point-of-care diagnostic devices. To this end, in this work, we compare CVD graphene aptasensors with the aptasensors based on reduced GO (rGO) for their capabilities in the detection of NT-proBNP, which serves as the gold standard biomarker for heart failure. Both types of aptasensors were developed using commercial gold interdigitated electrodes (IDEs) with either CVD graphene or GO formed on top as a channel of liquid-gated field-effect transistor (FET), yielding GFET and rGO-FET sensors, respectively. The functional properties of the two types of aptasensors were compared. Both demonstrate good dynamic range from 10 fg/mL to 100 pg/mL. The limit of detection for NT-proBNP in artificial saliva was 100 fg/mL and 1 pg/mL for rGO-FET- and GFET-based aptasensors, respectively. While CVD GFET demonstrates less variations in parameters, higher sensitivity was demonstrated by the rGO-FET due to its higher roughness and larger bandgap. The demonstrated low cost and scalability of technology for both types of graphene-based aptasensors may be applicable for the development of different graphene-based biosensors for rapid, stable, on-site, and highly sensitive detection of diverse biochemical markers.


Subject(s)
Biosensing Techniques , Graphite , Natriuretic Peptide, Brain , Peptide Fragments , Transistors, Electronic , Graphite/chemistry , Peptide Fragments/analysis , Humans , Limit of Detection , Gold/chemistry , Aptamers, Nucleotide/chemistry , Electrodes , Biomarkers/analysis
3.
Talanta ; 274: 126079, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38608631

ABSTRACT

Simple and low-cost biosensing solutions are suitable for point-of-care applications aiming to overcome the gap between scientific concepts and technological production. To compete with sensitivity and selectivity of golden standards, such as liquid chromatography, the functionalization of biosensors is continuously optimized to enhance the signal and improve their performance, often leading to complex chemical assay development. In this research, the efforts are made on optimizing the methodology for electrochemical reduction of graphene oxide to produce thin film-modified gold electrodes. Under the employed specific conditions, 20 cycles of cyclic voltammetry (CV) are shown to be optimal for superior electrical activation of graphene oxide into electrochemically reduced graphene oxide (ERGO). This platform is further used to develop a matrix metalloproteinase 2 (MMP-2) biosensor, where specific anti-MMP2 aptamers are utilized as a biorecognition element. MMP-2 is a protein which is typically overexpressed in tumor tissues, with important roles in tumor invasion, metastasis as well as in tumor angiogenesis. Based on impedimetric measurements, we were able to detect as low as 3.32 pg mL-1 of MMP-2 in PBS with a dynamic range of 10 pg mL-1 - 10 ng mL-1. Further experiments with real blood samples revealed a promising potential of the developed sensor for direct measurement of MMP-2 in complex media. High specificity of detection is demonstrated - even to the closely related enzyme MMP-9. Finally, the potential of reuse was demonstrated by signal restoration after experimental detection of MMP-2.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Graphite , Matrix Metalloproteinase 2 , Graphite/chemistry , Matrix Metalloproteinase 2/blood , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/analysis , Aptamers, Nucleotide/chemistry , Humans , Electrochemical Techniques/methods , Biosensing Techniques/methods , Oxidation-Reduction , Limit of Detection , Electrodes , Gold/chemistry
4.
Micromachines (Basel) ; 14(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37374691

ABSTRACT

Currently, an urgent need in the field of wearable electronics is the development of flexible sensors that can be attached to the human body to monitor various physiological indicators and movements. In this work, we propose a method for forming an electrically conductive network of multi-walled carbon nanotubes (MWCNT) in a matrix of silicone elastomer to make stretchable sensors sensitive to mechanical strain. The electrical conductivity and sensitivity characteristics of the sensor were improved by using laser exposure, through the effect of forming strong carbon nanotube (CNT) networks. The initial electrical resistance of the sensors obtained using laser technology was ~3 kOhm (in the absence of deformation) at a low concentration of nanotubes of 3 wt% in composition. For comparison, in a similar manufacturing process, but without laser exposure, the active material had significantly higher values of electrical resistance, which was ~19 kOhm in this case. The laser-fabricated sensors have a high tensile sensitivity (gauge factor ~10), linearity of >0.97, a low hysteresis of 2.4%, tensile strength of 963 kPa, and a fast strain response of 1 ms. The low Young's modulus values of ~47 kPa and the high electrical and sensitivity characteristics of the sensors made it possible to fabricate a smart gesture recognition sensor system based on them, with a recognition accuracy of ~94%. Data reading and visualization were performed using the developed electronic unit based on the ATXMEGA8E5-AU microcontroller and software. The obtained results open great prospects for the application of flexible CNT sensors in intelligent wearable devices (IWDs) for medical and industrial applications.

5.
Toxins (Basel) ; 15(5)2023 05 10.
Article in English | MEDLINE | ID: mdl-37235360

ABSTRACT

In this work, we report a novel method for the label-free detection of cyanotoxin molecules based on a direct assay utilizing a graphene-modified surface plasmon resonance (SPR) aptasensor. Molecular dynamic simulation of the aptamer's interaction with cylindrospermopsin (CYN) reveals the strongest binding sites between C18-C26 pairs. To modify the SPR sensor, the wet transfer method of CVD monolayer graphene was used. For the first time, we report the use of graphene functionalized by an aptamer as a bioreceptor in conjunction with SPR for the detection of CYN. In a direct assay with an anti-CYN aptamer, we demonstrated a noticeable change in the optical signal in response to the concentrations far below the maximum tolerable level of 1 µg/L and high specificity.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Surface Plasmon Resonance/methods , Biosensing Techniques/methods , Graphite/chemistry , Aptamers, Nucleotide/chemistry
6.
Biosensors (Basel) ; 12(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36551038

ABSTRACT

A novel photochemical technological route for one-step functionalization of a graphene surface with an azide-modified DNA aptamer for biomarkers is developed. The methodology is demonstrated for the functionalization of a DNA aptamer for an N-terminal B-type natriuretic peptide (NT-proBNP) heart failure biomarker on the surface of a graphene channel within a system based on a liquid-gated graphene field effect transistor (GFET). The limit of detection (LOD) of the aptamer-functionalized sensor is 0.01 pg/mL with short response time (75 s) for clinically relevant concentrations of the cardiac biomarker, which could be of relevance for point-of-care (POC) applications. The novel methodology could be applicable for the development of different graphene-based biosensors for fast, stable, real-time, and highly sensitive detection of disease markers.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Natriuretic Peptide, Brain , Peptide Fragments , Biomarkers
7.
Biosens Bioelectron ; 200: 113890, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34953205

ABSTRACT

Mycotoxins comprise a frequent type of toxins present in food and feed. The problem of mycotoxin contamination has been recently aggravated due to the increased complexity of the farm-to-fork chains, resulting in negative effects on human and animal health and, consequently, economics. The easy-to-use, on-site, on-demand, and rapid monitoring of mycotoxins in food/feed is highly desired. In this work, we report on an advanced mycotoxin biosensor based on an array of graphene field-effect transistors integrated on a single silicon chip. A specifically designed aptamer against ochratoxin A (OTA) was used as a recognition element, where it was covalently attached to graphene surface via pyrenebutanoic acid, succinimidyl ester (PBASE) chemistry. Namely, an electric field stimulation was used to promote more efficient π-π stacking of PBASE to graphene. The specific G-rich aptamer strand suggest its π-π stacking on graphene in free-standing regime and reconfiguration in G-quadruplex during binding an OTA molecule. This realistic behavior of the aptamer is sensitive to the ionic strength of the analyte solution, demonstrating a 10-fold increase in sensitivity at low ionic strengths. The graphene-aptamer sensors reported here demonstrate fast assay with the lowest detection limit of 1.4 pM for OTA within a response time as low as 10 s, which is more than 30 times faster compared to any other reported aptamer-based methods for mycotoxin detection. The sensors hold comparable performance when operated in real-time within a complex matrix of wine without additional time-consuming pre-treatment.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Ochratoxins , Wine , Animals , Humans , Limit of Detection , Ochratoxins/analysis , Wine/analysis
8.
Biomimetics (Basel) ; 6(4)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34842608

ABSTRACT

Multifunctional biomaterials can pave a way to novel types of micro- and nanoelectromechanical systems providing benefits in mimicking of biological functions in implantable, wearable structures. The production of biocomposites that hold both superior electrical and mechanical properties is still a challenging task. In this study, we aim to fabricate 3D printed hydrogel from a biocomposite of bovine serum albumin with graphene oxide (BSA@GO) using femtosecond laser processing. We have developed the method for functional BSA@GO composite nanostructuring based on both two-photon polymerization of nanofilaments and direct laser writing. The atomic-force microscopy was used to probe local electrical and mechanical properties of hydrogel BSA@GO nanowires. The improved local mechanical properties demonstrate synergistic effect in interaction of femtosecond laser pulses and novel composite structure.

9.
Nanomaterials (Basel) ; 11(10)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34685143

ABSTRACT

Electrochemical biosensors utilizing nanomaterials have received widespread attention in pathogen detection and monitoring. Here, the potential of different nanomaterials and electrochemical technologies is reviewed for the development of novel diagnostic devices for the detection of foodborne pathogens and their biomarkers. The overview covers basic electrochemical methods and means for electrode functionalization, utilization of nanomaterials that include quantum dots, gold, silver and magnetic nanoparticles, carbon nanomaterials (carbon and graphene quantum dots, carbon nanotubes, graphene and reduced graphene oxide, graphene nanoplatelets, laser-induced graphene), metal oxides (nanoparticles, 2D and 3D nanostructures) and other 2D nanomaterials. Moreover, the current and future landscape of synergic effects of nanocomposites combining different nanomaterials is provided to illustrate how the limitations of traditional technologies can be overcome to design rapid, ultrasensitive, specific and affordable biosensors.

10.
Biology (Basel) ; 10(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803111

ABSTRACT

Meat cultivation via cellular agriculture holds great promise as a method for future food production. In theory, it is an ideal way of meat production, humane to the animals and sustainable for the environment, while keeping the same taste and nutritional values as traditional meat and having additional benefits such as controlled fat content and absence of antibiotics and hormones used in the traditional meat industry. However, in practice, there is still a number of challenges, such as those associated with the upscale of cultured meat (CM). CM food safety monitoring is a necessary factor when envisioning both the regulatory compliance and consumer acceptance. To achieve this, a multidisciplinary approach is necessary. This includes extensive development of the sensitive and specific analytical devices i.e., sensors to enable reliable food safety monitoring throughout the whole future food supply chain. In addition, advanced monitoring options can help in the further optimization of the meat cultivation which may reduce the currently still high costs of production. This review presents an overview of the sensor monitoring options for the most relevant parameters of importance for meat cultivation. Examples of the various types of sensors that can potentially be used in CM production are provided and the options for their integration into bioreactors, as well as suggestions on further improvements and more advanced integration approaches. In favor of the multidisciplinary approach, we also include an overview of the bioreactor types, scaffolding options as well as imaging techniques relevant for CM research. Furthermore, we briefly present the current status of the CM research and related regulation, societal aspects and challenges to its upscaling and commercialization.

11.
Nanomaterials (Basel) ; 11(1)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467115

ABSTRACT

In this work, we report a novel method of label-free detection of small molecules based on direct observation of interferometric signal change in graphene-modified glasses. The interferometric sensor chips are fabricated via a conventional wet transfer method of CVD-grown graphene onto the glass coverslips, lowering the device cost and allowing for upscaling the sensor fabrication. For the first time, we report the use of graphene functionalized by the aptamer as the bioreceptor, in conjunction with Spectral-Phase Interferometry (SPI) for detection of ochratoxin A (OTA). In a direct assay with an OTA-specific aptamer, we demonstrated a quick and significant change of the optical signal in response to the maximum tolerable level of OTA concentration. The sensor regeneration is possible in urea solution. The developed platform enables a direct method of kinetic analysis of small molecules using a low-cost optical chip with a graphene-aptamer sensing layer.

12.
RSC Adv ; 11(48): 30270-30282, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-35480252

ABSTRACT

An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of various classification algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array was exposed to ammonia (NH3), nitrogen dioxide (NO2), hydrogen sulphide (H2S), and benzene (C6H6). Among them, ammonia (NH3) and nitrogen dioxide (NO2) are known biomarkers of chronic obstructive pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following exposure to the four target molecules. A remarkable response to ammonia (NH3) and nitrogen dioxide (NO2), according to benchmarking with available data in the literature, was observed. Sensor array responses were analyzed through principal component analysis (PCA), thus assessing the array selectivity and its capability to discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to accurately discriminate healthy from COPD subjects, in spite of the limited dataset.

13.
Adv Healthc Mater ; 9(12): e2000377, 2020 06.
Article in English | MEDLINE | ID: mdl-32378358

ABSTRACT

A sensor array based on heterojunctions between semiconducting organic layers and single walled carbon nanotube (SWCNT) films is produced to explore applications in breathomics, the molecular analysis of exhaled breath. The array is exposed to gas/volatiles relevant to specific diseases (ammonia, ethanol, acetone, 2-propanol, sodium hypochlorite, benzene, hydrogen sulfide, and nitrogen dioxide). Then, to evaluate its capability to operate with real relevant biological samples the array is exposed to human breath exhaled from healthy subjects. Finally, to provide a proof of concept of its diagnostic potential, the array is exposed to exhaled breath samples collected from subjects with chronic obstructive pulmonary disease (COPD), an airway chronic inflammatory disease not yet investigated with CNT-based sensor arrays, and breathprints are compared with those obtained from of healthy subjects. Principal component analysis shows that the sensor array is able to detect various target gas/volatiles with a clear fingerprint on a 2D subspace, is suitable for breath profiling in exhaled human breath, and is able to distinguish subjects with COPD from healthy subjects based on their breathprints. This classification ability is further improved by selecting the most responsive sensors to nitrogen dioxide, a potential biomarker of COPD.


Subject(s)
Biomarkers , Breath Tests , Pulmonary Disease, Chronic Obstructive , Exhalation , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Semiconductors
14.
Nanomaterials (Basel) ; 9(12)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835474

ABSTRACT

In this work, we report a novel method of maskless doping of a graphene channel in a field-effect transistor configuration by local inkjet printing of organic semiconducting molecules. The graphene-based transistor was fabricated via large-scale technology, allowing for upscaling electronic device fabrication and lowering the device's cost. The altering of the functionalization of graphene was performed through local inkjet printing of N,N'-Dihexyl-3,4,9,10-perylenedicarboximide (PDI-C6) semiconducting molecules' ink. We demonstrated the high resolution (about 50 µm) and accurate printing of organic ink on bare chemical vapor deposited (CVD) graphene. PDI-C6 forms nanocrystals onto the graphene's surface and transfers charges via π-π stacking to graphene. While the doping from organic molecules was compensated by oxygen molecules under normal conditions, we demonstrated the photoinduced current generation at the PDI-C6/graphene junction with ambient light, a 470 nm diode, and 532 nm laser sources. The local (in the scale of 1 µm) photoresponse of 0.5 A/W was demonstrated at a low laser power density. The methods we developed open the way for local functionalization of an on-chip array of graphene by inkjet printing of different semiconducting organic molecules for photonics and electronics.

15.
Toxins (Basel) ; 11(10)2019 09 20.
Article in English | MEDLINE | ID: mdl-31547037

ABSTRACT

In this work, we report an on-chip aptasensor for ochratoxin A (OTA) toxin detection that is based on a graphene field-effect transistor (GFET). Graphene-based devices are fabricated via large-scale technology, allowing for upscaling the sensor fabrication and lowering the device cost. The sensor assembly was performed through covalent bonding of graphene's surface with an aptamer specifically sensitive towards OTA. The results demonstrate fast (within 5 min) response to OTA exposure with a linear range of detection between 4 ng/mL and 10 pg/mL, with a detection limit of 4 pg/mL. The regeneration time constant of the sensor was found to be rather small, only 5.6 s, meaning fast sensor regeneration for multiple usages. The high reproducibility of the sensing response was demonstrated via using several recycling procedures as well as various GFETs. The applicability of the aptasensor to real samples was demonstrated for spiked red wine samples with recovery of about 105% for a 100 pM OTA concentration; the selectivity of the sensor was also confirmed via addition of another toxin, zearalenone. The developed platform opens the way for multiplex sensing of different toxins using an on-chip array of graphene sensors.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Graphite/chemistry , Ochratoxins/analysis , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...