Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(31): 16690-16697, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34337635

ABSTRACT

The explicit dependence of the rate of photoinduced ordering (photo-orientation) of an azobenzene-containing liquid-crystalline polymer on the photostationary concentration of cis-azobenzene has been predicted theoretically and found experimentally. The employed kinetic model based on the photoinduced rearrangement of the domain structure of a liquid-crystalline material predicts the maximum rate of photo-orientation at ca. 50% content of the cis-isomer in the photostationary state of irradiation. For experimental fine tuning of the photostationary trans-cis ratio, the simultaneous irradiation of material with two beams of light with different wavelengths was employed. The excellent agreement of theory and experiment indicates that the difference of photostationary fractions of cis-azobenzene fragments in adjacent domains of different orientations is the driving force of photoinduced ordering.

2.
J Phys Chem B ; 121(21): 5407-5412, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28489951

ABSTRACT

The helical supramolecular structure of cholesteric liquid crystalline (LC) films predetermines their outstanding optical properties and the unique nanostructure of their surface. The introduction of photochromic dopants in these films opens up an interesting possibility for creation of smart cholesteric materials with photocontrollable optical and photovariable surface properties. Using atomic force microscopy (AFM), we performed in situ measurements of the surface topography of cyclosiloxane LC cholesteric oligomer films during the cholesteric helix twisting caused by their preliminary ultraviolet (UV) irradiation. A chiral-photochromic isosorbide-based dopant was introduced in the films to control the cholesteric helix pitch by UV-irradiation. The initial films are characterized by planar texture with the presence of focal conic domains having the double-spiral relief on their surface. UV-irradiation of these films leads to the cholesteric helix twisting resulting in a decrease in the surface relief period, and the enlargement of defect areas between the domains. The detailed mechanisms of the rearrangement of the film surface structure due to the cholesteric helix twisting are suggested. They include the rotation and displacement of cholesteric layers in the bulk, and the nucleation of new ones at the surface in defect regions.

3.
J Phys Chem B ; 119(39): 12708-13, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26367876

ABSTRACT

The development of new approaches for the surface topography control is an important topic as the relief significantly affects physical and chemical properties of surfaces. We studied cholesteric cyclosiloxane oligomeric films on which surface focal conic domains with double-helix pattern were observed by means of AFM. In situ investigation of the dependence of the films topography on temperature showed that the surface relief formation can be effectively managed by varying conditions of thermal treatment. Obtained structures can be frozen by cooling the films below glass-transition temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...