Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(44)2020 Oct.
Article in English | MEDLINE | ID: mdl-33127674

ABSTRACT

Volcanic emissions are a critical pathway in Earth's carbon cycle. Here, we show that aerial measurements of volcanic gases using unoccupied aerial systems (UAS) transform our ability to measure and monitor plumes remotely and to constrain global volatile fluxes from volcanoes. Combining multi-scale measurements from ground-based remote sensing, long-range aerial sampling, and satellites, we present comprehensive gas fluxes-3760 ± [600, 310] tons day-1 CO2 and 5150 ± [730, 340] tons day-1 SO2-for a strong yet previously uncharacterized volcanic emitter: Manam, Papua New Guinea. The CO2/ST ratio of 1.07 ± 0.06 suggests a modest slab sediment contribution to the sub-arc mantle. We find that aerial strategies reduce uncertainties associated with ground-based remote sensing of SO2 flux and enable near-real-time measurements of plume chemistry and carbon isotope composition. Our data emphasize the need to account for time averaging of temporal variability in volcanic gas emissions in global flux estimates.

2.
Nature ; 423(6937): 273-6, 2003 May 15.
Article in English | MEDLINE | ID: mdl-12748638

ABSTRACT

The emission of volcanic gases usually precedes eruptive activity, providing both a warning signal and an indication of the nature of the lava soon to be erupted. Additionally, volcanic emissions are a significant source of gases and particles to the atmosphere, influencing tropospheric and stratospheric trace-gas budgets. Despite some halogen species having been measured in volcanic plumes (mainly HCl and HF), little is known about bromine compounds and, in particular, gas-phase reactive bromine species. Such species are especially important in the stratosphere, as reactive bromine-despite being two orders of magnitude less abundant than chlorine-accounts for about one-third of halogen-catalysed ozone depletion. In the troposphere, bromine-catalysed complete ozone destruction has been observed to occur regularly during spring in the polar boundary layers as well as in the troposphere above the Dead Sea basin. Here we report observations of BrO and SO2 abundances in the plume of the Soufrière Hills volcano (Montserrat) in May 2002 by ground-based multi-axis differential optical absorption spectroscopy. Our estimate of BrO emission leads us to conclude that local ozone depletion and small ozone 'holes' may occur in the vicinity of active volcanoes, and that the amount of bromine emitted from volcanoes might be sufficiently large to play a role not only in the stratosphere, but also in tropospheric chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...