Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Biomed Opt Express ; 13(2): 902-920, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35284184

ABSTRACT

Eye movements are commonly seen as an obstacle to high-resolution ophthalmic imaging. In this context we study the natural axial movements of the in vivo human eye and show that they can be used to modulate the optical phase and retrieve tomographic images via time-domain full-field optical coherence tomography (TD-FF-OCT). This approach opens a path to a simplified ophthalmic TD-FF-OCT device, operating without the usual piezo motor-camera synchronization. The device demonstrates in vivo human corneal images under the different image retrieval schemes (2-phase and 4-phase) and different exposure times (3.5 ms, 10 ms, 20 ms). Data on eye movements, acquired with a spectral-domain OCT with axial eye tracking (180 B-scans/s), are used to study the influence of ocular motion on the probability of capturing high-signal tomographic images without phase washout. The optimal combinations of camera acquisition speed and amplitude of piezo modulation are proposed and discussed.

2.
Opt Express ; 29(14): 22044-22065, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34265978

ABSTRACT

We report on a theoretical model for image formation in full-field optical coherence tomography (FFOCT). Because the spatial incoherence of the illumination acts as a virtual confocal pinhole in FFOCT, its imaging performance is equivalent to a scanning time-gated coherent confocal microscope. In agreement with optical experiments enabling a precise control of aberrations, FFOCT is shown to have nearly twice the resolution of standard imaging at moderate aberration level. Beyond a rigorous study on the sensitivity of FFOCT with respect to aberrations, this theoretical model paves the way towards an optimized design of adaptive optics and computational tools for high-resolution and deep imaging of biological tissues.


Subject(s)
Models, Theoretical , Optics and Photonics , Tomography, Optical Coherence/methods , Humans , Microscopy, Confocal/methods
3.
Sci Adv ; 6(30): eaay7170, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32923603

ABSTRACT

In optical imaging, light propagation is affected by the inhomogeneities of the medium. Sample-induced aberrations and multiple scattering can strongly degrade the image resolution and contrast. On the basis of a dynamic correction of the incident and/or reflected wavefronts, adaptive optics has been used to compensate for those aberrations. However, it only applies to spatially invariant aberrations or to thin aberrating layers. Here, we propose a global and noninvasive approach based on the distortion matrix concept. This matrix basically connects any focusing point of the image with the distorted part of its wavefront in reflection. A singular value decomposition of the distortion matrix allows to correct for high-order aberrations and forward multiple scattering over multiple isoplanatic modes. Proof-of-concept experiments are performed through biological tissues including a turbid cornea. We demonstrate a Strehl ratio enhancement up to 2500 and recover a diffraction-limited resolution until a depth of 10 scattering mean free paths.

4.
Nat Commun ; 11(1): 1868, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32313067

ABSTRACT

In today's clinics, a cell-resolution view of the cornea can be achieved only with a confocal microscope (IVCM) in contact with the eye. Here, we present a common-path full-field/spectral-domain OCT microscope (FF/SD OCT), which enables cell-detail imaging of the entire ocular surface in humans (central and peripheral cornea, limbus, sclera, tear film) without contact and in real-time. Real-time performance is achieved through rapid axial eye tracking and simultaneous defocusing correction. Images contain cells and nerves, which can be quantified over a millimetric field-of-view, beyond the capability of IVCM and conventional OCT. In the limbus, palisades of Vogt, vessels, and blood flow can be resolved with high contrast without contrast agent injection. The fast imaging speed of 275 frames/s (0.6 billion pixels/s) allows direct monitoring of blood flow dynamics, enabling creation of high-resolution velocity maps. Tear flow velocity and evaporation time can be measured without fluorescein administration.


Subject(s)
Angiography/instrumentation , Angiography/methods , Cornea/diagnostic imaging , Tomography, Optical Coherence/instrumentation , Tomography, Optical Coherence/methods , Adult , Biomedical Engineering/instrumentation , Biomedical Engineering/methods , Blood Flow Velocity , Cornea/pathology , Equipment Design , Female , Humans , Limbus Corneae/diagnostic imaging , Limbus Corneae/pathology , Male , Microscopy/methods , Optical Imaging/instrumentation , Optical Imaging/methods , Software , Young Adult
5.
Biomed Opt Express ; 9(2): 557-568, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29552393

ABSTRACT

We present the first full-field optical coherence tomography (FFOCT) device capable of in vivo imaging of the human cornea. We obtained images of the epithelial structures, Bowman's layer, sub-basal nerve plexus (SNP), anterior and posterior stromal keratocytes, stromal nerves, Descemet's membrane and endothelial cells with visible nuclei. Images were acquired with a high lateral resolution of 1.7 µm and relatively large field-of-view of 1.26 mm x 1.26 mm - a combination, which, to the best of our knowledge, has not been possible with other in vivo human eye imaging methods. The latter together with a contactless operation, make FFOCT a promising candidate for becoming a new tool in ophthalmic diagnostics.

6.
J Biomed Opt ; 22(9): 1-8, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28887875

ABSTRACT

Images recorded below the surface of a finger can have more details and be of higher quality than the conventional surface fingerprint images. This is particularly true when the quality of the surface fingerprints is compromised by, for example, moisture or surface damage. However, there is an unmet need for an inexpensive fingerprint sensor that is able to acquire high-quality images deep below the surface in short time. To this end, we report on a cost-effective full-field optical coherent tomography system comprised of a silicon camera and a powerful near-infrared LED light source. The system, for example, is able to record 1.7 cm×1.7 cmen face images in 0.12 s with the spatial sampling rate of 2116 dots per inch and the sensitivity of 93 dB. We show that the system can be used to image internal fingerprints and sweat ducts with good contrast. Finally, to demonstrate its biometric performance, we acquired subsurface fingerprint images from 240 individual fingers and estimated the equal-error-rate to be ∼0.8%. The developed instrument could also be used in other en face deep-tissue imaging applications because of its high sensitivity, such as in vivo skin imaging.


Subject(s)
Dermatoglyphics , Tomography, Optical Coherence/methods , Biometry , Fingers , Humans , Silicon , Tomography, Optical Coherence/instrumentation
7.
Biomed Opt Express ; 8(2): 622-639, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28270972

ABSTRACT

En face coherence microscopy or flying spot or full field optical coherence tomography or microscopy (FF-OCT/FF-OCM) belongs to the OCT family because the sectioning ability is mostly linked to the source coherence length. In this article we will focus our attention on the advantages and the drawbacks of the following approaches: en face versus B scan tomography in terms of resolution, coherent versus incoherent illumination and influence of aberrations, and scanning versus full field imaging. We then show some examples to illustrate the diverse applications of en face coherent microscopy and show that endogenous or exogenous contrasts can add valuable information to the standard morphological image. To conclude we discuss a few domains that appear promising for future development of en face coherence microscopy.

8.
Sci Adv ; 2(11): e1600370, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27847864

ABSTRACT

Multiple scattering of waves in disordered media is a nightmare whether it is for detection or imaging purposes. So far, the best approach to get rid of multiple scattering is optical coherence tomography. This basically combines confocal microscopy and coherence time gating to discriminate ballistic photons from a predominant multiple scattering background. Nevertheless, the imaging-depth range remains limited to 1 mm at best in human soft tissues because of aberrations and multiple scattering. We propose a matrix approach of optical imaging to push back this fundamental limit. By combining a matrix discrimination of ballistic waves and iterative time reversal, we show, both theoretically and experimentally, an extension of the imaging-depth limit by at least a factor of 2 compared to optical coherence tomography. In particular, the reported experiment demonstrates imaging through a strongly scattering layer from which only 1 reflected photon out of 1000 billion is ballistic. This approach opens a new route toward ultra-deep tissue imaging.


Subject(s)
Models, Theoretical , Tomography, Optical Coherence
9.
Opt Lett ; 41(17): 3920-3, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27607937

ABSTRACT

We show that with spatially incoherent illumination, the point spread function (PSF) width/spatial resolution of an imaging interferometer like that used in full-field optical coherence tomography (OCT) is almost insensitive to aberrations. In these systems, aberrations mostly induce a reduction of the signal level that leads to a loss of the signal-to-noise ratio without broadening the system PSF. This is demonstrated by comparison with traditional scanning OCT and wide-field OCT with spatially coherent illuminations. Theoretical analysis and numerical calculation as well as experimental results are provided to show this specific merit of incoherent illumination in full-field OCT. To the best of our knowledge, this is the first time that such a result has been demonstrated.

10.
Biomed Opt Express ; 7(4): 1511-24, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27446672

ABSTRACT

We developed a new endogenous approach to reveal subcellular metabolic contrast in fresh ex vivo tissues taking advantage of the time dependence of the full field optical coherence tomography interferometric signals. This method reveals signals linked with local activity of the endogenous scattering elements which can reveal cells where other OCT-based techniques fail or need exogenous contrast agents. We benefit from the micrometric transverse resolution of full field OCT to image intracellular features. We used this time dependence to identify different dynamics at the millisecond scale on a wide range of organs in normal or pathological conditions.

11.
Biomed Opt Express ; 6(11): 4465-71, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26601009

ABSTRACT

Imaging below fingertip surface might be a useful alternative to the traditional fingerprint sensing since the internal finger features are more reliable than the external ones. One of the most promising subsurface imaging technique is optical coherence tomography (OCT), which, however, has to acquire 3-D data even when a single en face image is required. This makes OCT inherently slow for en face imaging and produce unnecessary large data sets. Here we demonstrate that full-field optical coherence tomography (FF-OCT) can be used to produce en face images of sweat pores and internal fingerprints, which can be used for the identification purposes.

12.
Opt Lett ; 40(14): 3272-5, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26176447

ABSTRACT

Full-field optical coherence tomography (FF-OCT) provides en face images from deep in the tissue with high spatial resolution. Specular reflections, however, may reduce image contrast as it can be much stronger than the backscattered signal from a specimen. To this end, we demonstrate dark-field FF-OCT (d-FF-OCT) that can block specular reflections by the help of an opaque disk in the pupil-conjugated plane. The reference mirror is replaced by a blazed grating, which eliminates a walk-off between the sample and the reference beams on a camera that otherwise limits the imaging field-of-view (FOV). We show that d-FF-OCT can suppress specular reflections efficiently from the glass-specimen interface by at least two orders of magnitude and yield higher contrast images compared to the conventional FF-OCT.


Subject(s)
Darkness , Tomography, Optical Coherence/methods , Animals , Brain/cytology , Humans , Optical Phenomena , Sheep , Skin/cytology
13.
Biomed Opt Express ; 5(10): 3541-6, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25360370

ABSTRACT

Detecting the signal backscattered by nanoparticles immersed in highly scattering media such as biological tissue remains a challenge. In this article we report on the use of Full Field OCT (FF-OCT) to slice in depth in phantoms and in tissues in order a) to selectively observe the particles through the backscattered light at suitable wavelengths, and b) to detect the effects of the time-dependent response to full field optical heating through the strong absorption cross-section of these plasmonic nanoparticles. The analysis of the thermal wave behavior leads to the localization of the heat sources even when FF-OCT signals cannot reach the heated area.

14.
J Biomed Opt ; 18(12): 121514, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24357549

ABSTRACT

Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.


Subject(s)
Elasticity Imaging Techniques/methods , Elasticity/physiology , Image Processing, Computer-Assisted/methods , Tomography, Optical Coherence/methods , Animals , Brain/physiology , Elasticity Imaging Techniques/instrumentation , Phantoms, Imaging , Rats , Tomography, Optical Coherence/instrumentation
15.
Biomed Opt Express ; 4(10): 2138-49, 2013.
Article in English | MEDLINE | ID: mdl-24156070

ABSTRACT

Full-Field OCT (FF-OCT) is able to image biological tissues in 3D with micrometer resolution. In this study we add elastographic contrast to the FF-OCT modality. By combining FF-OCT with elastography, we create a virtual palpation map at the micrometer scale. We present here a proof of concept on multi-layer phantoms and preliminary results on ex vivo biological samples such as porcine cornea, human breast tissues and rat heart. The 3D digital volume correlation that is used in connection with the 3D stack of images allows to access to the full 3D strain tensor and to reveal stiffness anisotropy.

16.
Biomed Opt Express ; 3(10): 2510-25, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23082292

ABSTRACT

Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

17.
J Biomed Opt ; 16(11): 116012, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22112117

ABSTRACT

Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-µm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.


Subject(s)
Molecular Imaging/methods , Myelin Sheath/chemistry , Tomography, Optical Coherence/methods , Animals , Cerebral Cortex/chemistry , Cerebral Cortex/ultrastructure , Early Growth Response Protein 2/genetics , Female , Male , Mice , Mice, Knockout , Microscopy , Myelin Sheath/ultrastructure , Rats , Rats, Wistar , Sciatic Nerve/chemistry , Sciatic Nerve/ultrastructure
18.
Biomed Opt Express ; 2(10): 2897-904, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-22025991

ABSTRACT

Full-field OCT has proved to be a powerful high-resolution cellular imaging tool for biological tissues. However the standard bulk full-field OCT setup does not match the size requirements for most in situ and in vivo imaging applications. We adapted its principle into a rigid needle-like probe using two coupled interferometers and incoherent illumination: an external processing interferometer is used for in-depth scanning, while a distal common-path interferometer at the tip of the probe collects light backscattered from the tissue. Our experimental setup achieves an axial and transversal resolution in tissue of 1.8 µm and 3.5 µm respectively, for a sensitivity of -80 dB. We present ex vivo images of human breast tissue, and in vivo images of different areas of human skin, which reveal cellular-level structures.

19.
J Opt Soc Am A Opt Image Sci Vis ; 28(7): 1436-44, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21734743

ABSTRACT

Acousto-optical coherence tomography (AOCT) is a variant of acousto-optic imaging (also called ultrasonic modulation imaging) that makes it possible to get the z resolution with acoustic and optic continuous wave beams. We describe here theoretically the AOCT effect, and we show that the acousto-optic "tagged photons" remain coherent if they are generated within a specific z region of the sample. We quantify the z selectivity for both the "tagged photon" field and for the Lesaffre et al. [Opt. Express 17, 18211 (2009)] photorefractive signal.


Subject(s)
Light , Models, Theoretical , Tomography, Optical Coherence , Ultrasonics , Phantoms, Imaging , Photons
20.
Phys Rev Lett ; 107(26): 263901, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22243156

ABSTRACT

We report on the experimental measurement of the backscattering matrix of a weakly scattering medium in optics, composed of a few dispersed gold nanobeads. The decomposition of the time-reversal operator is applied to this matrix and we demonstrate selective and efficient focusing on individual scatterers, even through an aberrating layer. Moreover, we show that this approach provides the decomposition of the scattering pattern of a single nanoparticle. These results open important perspectives for optical imaging, characterization, and selective excitation of nanoparticles.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Optical Phenomena , Lasers , Microspheres , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL