Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Psychol ; 14: 1073686, 2023.
Article in English | MEDLINE | ID: mdl-36760454

ABSTRACT

Introduction: With the growing prevalence of AI-based systems and the development of specific regulations and standardizations in response, accountability for consequences resulting from the development or use of these technologies becomes increasingly important. However, concrete strategies and approaches of solving related challenges seem to not have been suitably developed for or communicated with AI practitioners. Methods: Studying how risk governance methods can be (re)used to administer AI accountability, we aim at contributing to closing this gap. We chose an exploratory workshop-based methodology to investigate current challenges for accountability and risk management approaches raised by AI practitioners from academia and industry. Results and Discussion: Our interactive study design revealed various insights on which aspects do or do not work for handling risks of AI in practice. From the gathered perspectives, we derived 5 required characteristics for AI risk management methodologies (balance, extendability, representation, transparency and long-term orientation) and determined demands for clarification and action (e.g., for the definition of risk and accountabilities or standardization of risk governance and management) in the effort to move AI accountability from a conceptual stage to industry practice.

2.
Healthcare (Basel) ; 11(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36611519

ABSTRACT

The growing awareness of the influence of "what we eat" on lifestyle and health has led to an increase in the use of embedded food analysis and recognition systems. These solutions aim to effectively monitor daily food consumption, and therefore provide dietary recommendations to enable and support lifestyle changes. Mobile applications, due to their high accessibility, are ideal for real-life food recognition, volume estimation and calorific estimation. In this study, we conducted a systematic review based on articles that proposed mobile computer vision-based solutions for food recognition, volume estimation and calorific estimation. In addition, we assessed the extent to which these applications provide explanations to aid the users to understand the related classification and/or predictions. Our results show that 90.9% of applications do not distinguish between food and non-food. Similarly, only one study that proposed a mobile computer vision-based application for dietary intake attempted to provide explanations of features that contribute towards classification. Mobile computer vision-based applications are attracting a lot of interest in healthcare. They have the potential to assist in the management of chronic illnesses such as diabetes, ensuring that patients eat healthily and reducing complications associated with unhealthy food. However, to improve trust, mobile computer vision-based applications in healthcare should provide explanations of how they derive their classifications or volume and calorific estimations.

SELECTION OF CITATIONS
SEARCH DETAIL